Implements the methods which are in the standard J2SE's Math class, but are not in in J2ME's.
//package org.j4me.util;
/**
* Implements the methods which are in the standard J2SE's <code>Math</code> class,
* but are not in in J2ME's.
* <p>
* The following methods are still missing from the implementation:
* <ul>
* <li><code>public static double exp (double a)</code>
* <li><code>public static double log (double a)</code>
* <li><code>public static double pow (double a, double b)</code>
* <li><code>public static double random ()</code>
* <li><code>public static double rint()</code>
* </ul>
*
* @see java.lang.Math
*/
public final class MathFunc
{
/**
* Constant for PI divided by 2.
*/
private static final double PIover2 = Math.PI / 2;
/**
* Constant for PI divided by 4.
*/
private static final double PIover4 = Math.PI / 4;
/**
* Constant for PI divided by 6.
*/
private static final double PIover6 = Math.PI / 6;
/**
* Constant for PI divided by 12.
*/
private static final double PIover12 = Math.PI / 12;
/**
* Constant used in the <code>atan</code> calculation.
*/
private static final double ATAN_CONSTANT = 1.732050807569;
/**
* Returns the arc cosine of an angle, in the range of 0.0 through <code>Math.PI</code>.
* Special case:
* <ul>
* <li>If the argument is <code>NaN</code> or its absolute value is greater than 1,
* then the result is <code>NaN</code>.
* </ul>
*
* @param a - the value whose arc cosine is to be returned.
* @return the arc cosine of the argument.
*/
public static double acos (double a)
{
// Special case.
if ( Double.isNaN(a) || Math.abs(a) > 1.0 )
{
return Double.NaN;
}
// Calculate the arc cosine.
double aSquared = a * a;
double arcCosine = atan2( Math.sqrt(1 - aSquared), a );
return arcCosine;
}
/**
* Returns the arc sine of an angle, in the range of <code>-Math.PI/2</code> through
* <code>Math.PI/2</code>. Special cases:
* <ul>
* <li>If the argument is <code>NaN</code> or its absolute value is greater than 1,
* then the result is <code>NaN</code>.
* <li>If the argument is zero, then the result is a zero with the same sign
* as the argument.
* </ul>
*
* @param a - the value whose arc sine is to be returned.
* @return the arc sine of the argument.
*/
public static double asin (double a)
{
// Special cases.
if ( Double.isNaN(a) || Math.abs(a) > 1.0 )
{
return Double.NaN;
}
if ( a == 0.0 )
{
return a;
}
// Calculate the arc sine.
double aSquared = a * a;
double arcSine = atan2( a, Math.sqrt(1 - aSquared) );
return arcSine;
}
/**
* Returns the arc tangent of an angle, in the range of <code>-Math.PI/2</code>
* through <code>Math.PI/2</code>. Special cases:
* <ul>
* <li>If the argument is <code>NaN</code>, then the result is <code>NaN</code>.
* <li>If the argument is zero, then the result is a zero with the same
* sign as the argument.
* </ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a - the value whose arc tangent is to be returned.
* @return the arc tangent of the argument.
*/
public static double atan (double a)
{
// Special cases.
if ( Double.isNaN(a) )
{
return Double.NaN;
}
if ( a == 0.0 )
{
return a;
}
// Compute the arc tangent.
boolean negative = false;
boolean greaterThanOne = false;
int i = 0;
if ( a < 0.0 )
{
a = -a;
negative = true;
}
if ( a > 1.0 )
{
a = 1.0 / a;
greaterThanOne = true;
}
double t;
for ( ; a > PIover12; a *= t )
{
i++;
t = a + ATAN_CONSTANT;
t = 1.0 / t;
a *= ATAN_CONSTANT;
a--;
}
double aSquared = a * a;
double arcTangent = aSquared + 1.4087812;
arcTangent = 0.55913709 / arcTangent;
arcTangent += 0.60310578999999997;
arcTangent -= 0.051604539999999997 * aSquared;
arcTangent *= a;
for ( ; i > 0; i-- )
{
arcTangent += PIover6;
}
if ( greaterThanOne )
{
arcTangent = PIover2 - arcTangent;
}
if ( negative )
{
arcTangent = -arcTangent;
}
return arcTangent;
}
/**
* Converts rectangular coordinates (x, y) to polar (r, <i>theta</i>). This method
* computes the phase <i>theta</i> by computing an arc tangent of y/x in the range
* of <i>-pi</i> to <i>pi</i>. Special cases:
* <ul>
* <li>If either argument is <code>NaN</code>, then the result is <code>NaN</code>.
* <li>If the first argument is positive zero and the second argument is
* positive, or the first argument is positive and finite and the second
* argument is positive infinity, then the result is positive zero.
* <li>If the first argument is negative zero and the second argument is
* positive, or the first argument is negative and finite and the second
* argument is positive infinity, then the result is negative zero.
* <li>If the first argument is positive zero and the second argument is
* negative, or the first argument is positive and finite and the second
* argument is negative infinity, then the result is the <code>double</code> value
* closest to <i>pi</i>.
* <li>If the first argument is negative zero and the second argument is
* negative, or the first argument is negative and finite and the second
* argument is negative infinity, then the result is the <code>double</code> value
* closest to <i>-pi</i>.
* <li>If the first argument is positive and the second argument is positive
* zero or negative zero, or the first argument is positive infinity and
* the second argument is finite, then the result is the <code>double</code> value
* closest to <i>pi</i>/2.
* <li>If the first argument is negative and the second argument is positive
* zero or negative zero, or the first argument is negative infinity and
* the second argument is finite, then the result is the <code>double</code> value
* closest to <i>-pi</i>/2.
* <li>If both arguments are positive infinity, then the result is the double
* value closest to <i>pi</i>/4.
* <li>If the first argument is positive infinity and the second argument is
* negative infinity, then the result is the double value closest to 3*<i>pi</i>/4.
* <li>If the first argument is negative infinity and the second argument is
* positive infinity, then the result is the double value closest to -<i>pi</i>/4.
* <li>If both arguments are negative infinity, then the result is the double
* value closest to -3*<i>pi</i>/4.
* </ul>
* <p>
* A result must be within 2 ulps of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param y - the ordinate coordinate
* @param x - the abscissa coordinate
* @return the <i>theta</i> component of the point (r, <i>theta</i>) in polar
* coordinates that corresponds to the point (x, y) in Cartesian coordinates.
*/
public static double atan2 (double y, double x)
{
// Special cases.
if ( Double.isNaN(y) || Double.isNaN(x) )
{
return Double.NaN;
}
else if ( Double.isInfinite(y) )
{
if ( y > 0.0 ) // Positive infinity
{
if ( Double.isInfinite(x) )
{
if ( x > 0.0 )
{
return PIover4;
}
else
{
return 3.0 * PIover4;
}
}
else if ( x != 0.0 )
{
return PIover2;
}
}
else // Negative infinity
{
if ( Double.isInfinite(x) )
{
if ( x > 0.0 )
{
return -PIover4;
}
else
{
return -3.0 * PIover4;
}
}
else if ( x != 0.0 )
{
return -PIover2;
}
}
}
else if ( y == 0.0 )
{
if ( x > 0.0 )
{
return y;
}
else if ( x < 0.0 )
{
return Math.PI;
}
}
else if ( Double.isInfinite(x) )
{
if ( x > 0.0 ) // Positive infinity
{
if ( y > 0.0 )
{
return 0.0;
}
else if ( y < 0.0 )
{
return -0.0;
}
}
else // Negative infinity
{
if ( y > 0.0 )
{
return Math.PI;
}
else if ( y < 0.0 )
{
return -Math.PI;
}
}
}
else if ( x == 0.0 )
{
if ( y > 0.0 )
{
return PIover2;
}
else if ( y < 0.0 )
{
return -PIover2;
}
}
// Implementation a simple version ported from a PASCAL implementation:
// http://everything2.com/index.pl?node_id=1008481
double arcTangent;
// Use arctan() avoiding division by zero.
if ( Math.abs(x) > Math.abs(y) )
{
arcTangent = atan(y / x);
}
else
{
arcTangent = atan(x / y); // -PI/4 <= a <= PI/4
if ( arcTangent < 0 )
{
arcTangent = -PIover2 - arcTangent; // a is negative, so we're adding
}
else
{
arcTangent = PIover2 - arcTangent;
}
}
// Adjust result to be from [-PI, PI]
if ( x < 0 )
{
if ( y < 0 )
{
arcTangent = arcTangent - Math.PI;
}
else
{
arcTangent = arcTangent + Math.PI;
}
}
return arcTangent;
}
/**
* Returns the closest <code>int</code> to the argument. The
* result is rounded to an integer by adding 1/2, taking the
* floor of the result, and casting the result to type <code>int</code>.
* In other words, the result is equal to the value of the expression:
* <p>
* <pre>(int)Math.floor(a + 0.5f)</pre>
* <p>
* Special cases:
* <ul>
* <li>If the argument is NaN, the result is 0.
* <li>If the argument is negative infinity or any value less than or
* equal to the value of <code>Integer.MIN_VALUE</code>, the result is
* equal to the value of <code>Integer.MIN_VALUE</code>.
* <li>If the argument is positive infinity or any value greater than or
* equal to the value of <code>Integer.MAX_VALUE</code>, the result is
* equal to the value of <code>Integer.MAX_VALUE</code>.
* </ul>
*
* @param a - a floating-point value to be rounded to an integer.
* @return the value of the argument rounded to the nearest <code>int</code> value.
*/
public static int round (float a)
{
return (int)Math.floor( a + 0.5f );
}
/**
* Returns the closest <code>long</code> to the argument. The result
* is rounded to an integer by adding 1/2, taking the floor of the
* result, and casting the result to type <code>long</code>. In other
* words, the result is equal to the value of the expression:
* <p>
* <pre>(long)Math.floor(a + 0.5d)</pre>
* <p>
* Special cases:
* <ul>
* <li>If the argument is NaN, the result is 0.
* <li>If the argument is negative infinity or any value less than or
* equal to the value of <code>Long.MIN_VALUE</code>, the result is
* equal to the value of <code>Long.MIN_VALUE</code>.
* <li>If the argument is positive infinity or any value greater than or
* equal to the value of <code>Long.MAX_VALUE</code>, the result is
* equal to the value of <code>Long.MAX_VALUE</code>.
* </ul>
*
* @param a - a floating-point value to be rounded to a <code>long</code>.
* @return the value of the argument rounded to the nearest <code>long</code> value.
*/
public static long round (double a)
{
return (long)Math.floor( a + 0.5 );
}
}
Related examples in the same category
1. | Absolute value | | |
2. | Find absolute value of float, int, double and long using Math.abs | | |
3. | Find ceiling value of a number using Math.ceil | | |
4. | Find exponential value of a number using Math.exp | | |
5. | Find floor value of a number using Math.floor | | |
6. | Find minimum of two numbers using Math.min | | |
7. | Find power using Math.pow | | |
8. | Find square root of a number using Math.sqrt | | |
9. | Find natural logarithm value of a number using Math.log | | |
10. | Find maximum of two numbers using Math.max | | |
11. | Get the power value | | |
12. | Using the Math Trig Methods | | |
13. | Using BigDecimal for Precision | | |
14. | Demonstrate our own version round() | | |
15. | Demonstrate a few of the Math functions for Trigonometry | | |
16. | Exponential Demo | | |
17. | Min Demo | | |
18. | Basic Math Demo | | |
19. | Using strict math in applications | | |
20. | Conversion between polar and rectangular coordinates | | |
21. | Using the pow() function | | |
22. | Using strict math at the method level | | |
23. | Calculating hyperbolic functions | | |
24. | Calculating trigonometric functions | | |
25. | Weighted floating-point comparisons | | |
26. | Solving right triangles | | |
27. | Applying the quadratic formula | | |
28. | Calculate the floor of the log, base 2 | | |
29. | Greatest Common Divisor (GCD) of positive integer numbers | | |
30. | Least Common Multiple (LCM) of two strictly positive integer numbers | | |
31. | Moving Average | | |
32. | Make Exponention | | |
33. | Caclulate the factorial of N | | |
34. | Trigonometric Demo | | |
35. | Complex Number Demo | | |
36. | sqrt(a^2 + b^2) without under/overflow | | |
37. | Returns an integer hash code representing the given double array value. | | |
38. | Returns an integer hash code representing the given double value. | | |
39. | Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n as a double. | | |
40. | Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n. | | |
41. | Returns the hyperbolic sine of x. | | |
42. | Contains static definition for matrix math methods. | | |
43. | For a double precision value x, this method returns +1.0 if x >= 0 and -1.0 if x < 0. Returns NaN if x is NaN. | | |
44. | For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < 0. Returns NaN if x is NaN. | | |
45. | Normalize an angle in a 2&pi wide interval around a center value. | | |
46. | Normalizes an angle to a relative angle. | | |
47. | Normalizes an angle to an absolute angle | | |
48. | Normalizes an angle to be near an absolute angle | | |
49. | Returns the natural logarithm of n!. | | |
50. | Returns the least common multiple between two integer values. | | |
51. | Gets the greatest common divisor of the absolute value of two numbers | | |
52. | Matrix manipulation | | |
53. | Returns exact (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient | | |
54. | Returns a double representation of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient | | |
55. | Returns the natural log of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient | | |
56. | Returns the hyperbolic cosine of x. | | |
57. | Math Utils | | |
58. | Utility methods for mathematical problems. | | |
59. | A math utility class with static methods. | | |
60. | Computes the binomial coefficient "n over k" | | |
61. | Log Gamma | | |
62. | Log Beta | | |
63. | Beta | | |
64. | Gamma | | |
65. | Factorial | | |
66. | Computes p(x;n,p) where x~B(n,p) | | |
67. | Returns the sum of two doubles expressed in log space | | |
68. | sigmod | | |
69. | sigmod rev | | |
70. | Numbers that are closer than this are considered equal | | |
71. | Returns the KL divergence, K(p1 || p2). | | |
72. | Returns the sum of two doubles expressed in log space | | |
73. | Returns the difference of two doubles expressed in log space | | |
74. | Is Prime | | |
75. | Statistical functions on arrays of numbers, namely, the mean, variance, standard deviation, covariance, min and max | | |
76. | This class calculates the Factorial of a numbers passed into the program through command line arguments. | | |
77. | Calculates the Greatest Common Divisor of two numbers passed into the program through command line arguments. | | |
78. | Variance: the square of the standard deviation. | | |
79. | Population Standard Deviation | | |
80. | Returns from a static prime table the least prime that is greater than or equal to a specified value. | | |