Android Open Source - Processing-Android-Eclipse-Demos Sweep






From Project

Back to project page Processing-Android-Eclipse-Demos.

License

The source code is released under:

MIT License

If you think the Android project Processing-Android-Eclipse-Demos listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.

Java Source Code

/*
* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc.
//  ww w.  j av a 2 s .  c om
* All rights reserved.
*/

/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 2.0 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** NOTE:  The Original Code (as defined below) has been licensed to Sun
** Microsystems, Inc. ("Sun") under the SGI Free Software License B
** (Version 1.1), shown above ("SGI License").   Pursuant to Section
** 3.2(3) of the SGI License, Sun is distributing the Covered Code to
** you under an alternative license ("Alternative License").  This
** Alternative License includes all of the provisions of the SGI License
** except that Section 2.2 and 11 are omitted.  Any differences between
** the Alternative License and the SGI License are offered solely by Sun
** and not by SGI.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** Author: Eric Veach, July 1994
** Java Port: Pepijn Van Eeckhoudt, July 2003
** Java Port: Nathan Parker Burg, August 2003
** Processing integration: Andres Colubri, February 2012
*/

package com.processing.opengl.tess;


class Sweep {
    private Sweep() {
    }

//    #ifdef FOR_TRITE_TEST_PROGRAM
//    extern void DebugEvent( GLUtessellator *tess );
//    #else
    private static void DebugEvent(GLUtessellatorImpl tess) {

    }
//    #endif

/*
 * Invariants for the Edge Dictionary.
 * - each pair of adjacent edges e2=Succ(e1) satisfies EdgeLeq(e1,e2)
 *   at any valid location of the sweep event
 * - if EdgeLeq(e2,e1) as well (at any valid sweep event), then e1 and e2
 *   share a common endpoint
 * - for each e, e.Dst has been processed, but not e.Org
 * - each edge e satisfies VertLeq(e.Dst,event) && VertLeq(event,e.Org)
 *   where "event" is the current sweep line event.
 * - no edge e has zero length
 *
 * Invariants for the Mesh (the processed portion).
 * - the portion of the mesh left of the sweep line is a planar graph,
 *   ie. there is *some* way to embed it in the plane
 * - no processed edge has zero length
 * - no two processed vertices have identical coordinates
 * - each "inside" region is monotone, ie. can be broken into two chains
 *   of monotonically increasing vertices according to VertLeq(v1,v2)
 *   - a non-invariant: these chains may intersect (very slightly)
 *
 * Invariants for the Sweep.
 * - if none of the edges incident to the event vertex have an activeRegion
 *   (ie. none of these edges are in the edge dictionary), then the vertex
 *   has only right-going edges.
 * - if an edge is marked "fixUpperEdge" (it is a temporary edge introduced
 *   by ConnectRightVertex), then it is the only right-going edge from
 *   its associated vertex.  (This says that these edges exist only
 *   when it is necessary.)
 */

/* When we merge two edges into one, we need to compute the combined
 * winding of the new edge.
 */
    private static void AddWinding(GLUhalfEdge eDst, GLUhalfEdge eSrc) {
        eDst.winding += eSrc.winding;
        eDst.Sym.winding += eSrc.Sym.winding;
    }


    private static ActiveRegion RegionBelow(ActiveRegion r) {
        return ((ActiveRegion) Dict.dictKey(Dict.dictPred(r.nodeUp)));
    }

    private static ActiveRegion RegionAbove(ActiveRegion r) {
        return ((ActiveRegion) Dict.dictKey(Dict.dictSucc(r.nodeUp)));
    }

    static boolean EdgeLeq(GLUtessellatorImpl tess, ActiveRegion reg1, ActiveRegion reg2)
/*
 * Both edges must be directed from right to left (this is the canonical
 * direction for the upper edge of each region).
 *
 * The strategy is to evaluate a "t" value for each edge at the
 * current sweep line position, given by tess.event.  The calculations
 * are designed to be very stable, but of course they are not perfect.
 *
 * Special case: if both edge destinations are at the sweep event,
 * we sort the edges by slope (they would otherwise compare equally).
 */ {
        GLUvertex event = tess.event;
        GLUhalfEdge e1, e2;
        double t1, t2;

        e1 = reg1.eUp;
        e2 = reg2.eUp;

        if (e1.Sym.Org == event) {
            if (e2.Sym.Org == event) {
                /* Two edges right of the sweep line which meet at the sweep event.
                 * Sort them by slope.
                 */
                if (Geom.VertLeq(e1.Org, e2.Org)) {
                    return Geom.EdgeSign(e2.Sym.Org, e1.Org, e2.Org) <= 0;
                }
                return Geom.EdgeSign(e1.Sym.Org, e2.Org, e1.Org) >= 0;
            }
            return Geom.EdgeSign(e2.Sym.Org, event, e2.Org) <= 0;
        }
        if (e2.Sym.Org == event) {
            return Geom.EdgeSign(e1.Sym.Org, event, e1.Org) >= 0;
        }

        /* General case - compute signed distance *from* e1, e2 to event */
        t1 = Geom.EdgeEval(e1.Sym.Org, event, e1.Org);
        t2 = Geom.EdgeEval(e2.Sym.Org, event, e2.Org);
        return (t1 >= t2);
    }


    static void DeleteRegion(GLUtessellatorImpl tess, ActiveRegion reg) {
        if (reg.fixUpperEdge) {
            /* It was created with zero winding number, so it better be
             * deleted with zero winding number (ie. it better not get merged
             * with a real edge).
             */
            assert (reg.eUp.winding == 0);
        }
        reg.eUp.activeRegion = null;
        Dict.dictDelete(tess.dict, reg.nodeUp); /* __gl_dictListDelete */
    }


    static boolean FixUpperEdge(ActiveRegion reg, GLUhalfEdge newEdge)
/*
 * Replace an upper edge which needs fixing (see ConnectRightVertex).
 */ {
        assert (reg.fixUpperEdge);
        if (!Mesh.__gl_meshDelete(reg.eUp)) return false;
        reg.fixUpperEdge = false;
        reg.eUp = newEdge;
        newEdge.activeRegion = reg;

        return true;
    }

    static ActiveRegion TopLeftRegion(ActiveRegion reg) {
        GLUvertex org = reg.eUp.Org;
        GLUhalfEdge e;

        /* Find the region above the uppermost edge with the same origin */
        do {
            reg = RegionAbove(reg);
        } while (reg.eUp.Org == org);

        /* If the edge above was a temporary edge introduced by ConnectRightVertex,
         * now is the time to fix it.
         */
        if (reg.fixUpperEdge) {
            e = Mesh.__gl_meshConnect(RegionBelow(reg).eUp.Sym, reg.eUp.Lnext);
            if (e == null) return null;
            if (!FixUpperEdge(reg, e)) return null;
            reg = RegionAbove(reg);
        }
        return reg;
    }

    static ActiveRegion TopRightRegion(ActiveRegion reg) {
        GLUvertex dst = reg.eUp.Sym.Org;

        /* Find the region above the uppermost edge with the same destination */
        do {
            reg = RegionAbove(reg);
        } while (reg.eUp.Sym.Org == dst);
        return reg;
    }

    static ActiveRegion AddRegionBelow(GLUtessellatorImpl tess,
                                       ActiveRegion regAbove,
                                       GLUhalfEdge eNewUp)
/*
 * Add a new active region to the sweep line, *somewhere* below "regAbove"
 * (according to where the new edge belongs in the sweep-line dictionary).
 * The upper edge of the new region will be "eNewUp".
 * Winding number and "inside" flag are not updated.
 */ {
        ActiveRegion regNew = new ActiveRegion();
        if (regNew == null) throw new RuntimeException();

        regNew.eUp = eNewUp;
        /* __gl_dictListInsertBefore */
        regNew.nodeUp = Dict.dictInsertBefore(tess.dict, regAbove.nodeUp, regNew);
        if (regNew.nodeUp == null) throw new RuntimeException();
        regNew.fixUpperEdge = false;
        regNew.sentinel = false;
        regNew.dirty = false;

        eNewUp.activeRegion = regNew;
        return regNew;
    }

    static boolean IsWindingInside(GLUtessellatorImpl tess, int n) {
        switch (tess.windingRule) {
            case PGLU.GLU_TESS_WINDING_ODD:
                return (n & 1) != 0;
            case PGLU.GLU_TESS_WINDING_NONZERO:
                return (n != 0);
            case PGLU.GLU_TESS_WINDING_POSITIVE:
                return (n > 0);
            case PGLU.GLU_TESS_WINDING_NEGATIVE:
                return (n < 0);
            case PGLU.GLU_TESS_WINDING_ABS_GEQ_TWO:
                return (n >= 2) || (n <= -2);
        }
        /*LINTED*/
//        assert (false);
        throw new InternalError();
        /*NOTREACHED*/
    }


    static void ComputeWinding(GLUtessellatorImpl tess, ActiveRegion reg) {
        reg.windingNumber = RegionAbove(reg).windingNumber + reg.eUp.winding;
        reg.inside = IsWindingInside(tess, reg.windingNumber);
    }


    static void FinishRegion(GLUtessellatorImpl tess, ActiveRegion reg)
/*
 * Delete a region from the sweep line.  This happens when the upper
 * and lower chains of a region meet (at a vertex on the sweep line).
 * The "inside" flag is copied to the appropriate mesh face (we could
 * not do this before -- since the structure of the mesh is always
 * changing, this face may not have even existed until now).
 */ {
        GLUhalfEdge e = reg.eUp;
        GLUface f = e.Lface;

        f.inside = reg.inside;
        f.anEdge = e;   /* optimization for __gl_meshTessellateMonoRegion() */
        DeleteRegion(tess, reg);
    }


    static GLUhalfEdge FinishLeftRegions(GLUtessellatorImpl tess,
                                         ActiveRegion regFirst, ActiveRegion regLast)
/*
 * We are given a vertex with one or more left-going edges.  All affected
 * edges should be in the edge dictionary.  Starting at regFirst.eUp,
 * we walk down deleting all regions where both edges have the same
 * origin vOrg.  At the same time we copy the "inside" flag from the
 * active region to the face, since at this point each face will belong
 * to at most one region (this was not necessarily true until this point
 * in the sweep).  The walk stops at the region above regLast; if regLast
 * is null we walk as far as possible.  At the same time we relink the
 * mesh if necessary, so that the ordering of edges around vOrg is the
 * same as in the dictionary.
 */ {
        ActiveRegion reg, regPrev;
        GLUhalfEdge e, ePrev;

        regPrev = regFirst;
        ePrev = regFirst.eUp;
        while (regPrev != regLast) {
            regPrev.fixUpperEdge = false;    /* placement was OK */
            reg = RegionBelow(regPrev);
            e = reg.eUp;
            if (e.Org != ePrev.Org) {
                if (!reg.fixUpperEdge) {
                    /* Remove the last left-going edge.  Even though there are no further
                     * edges in the dictionary with this origin, there may be further
                     * such edges in the mesh (if we are adding left edges to a vertex
                     * that has already been processed).  Thus it is important to call
                     * FinishRegion rather than just DeleteRegion.
                     */
                    FinishRegion(tess, regPrev);
                    break;
                }
                /* If the edge below was a temporary edge introduced by
                 * ConnectRightVertex, now is the time to fix it.
                 */
                e = Mesh.__gl_meshConnect(ePrev.Onext.Sym, e.Sym);
                if (e == null) throw new RuntimeException();
                if (!FixUpperEdge(reg, e)) throw new RuntimeException();
            }

            /* Relink edges so that ePrev.Onext == e */
            if (ePrev.Onext != e) {
                if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
                if (!Mesh.__gl_meshSplice(ePrev, e)) throw new RuntimeException();
            }
            FinishRegion(tess, regPrev);    /* may change reg.eUp */
            ePrev = reg.eUp;
            regPrev = reg;
        }
        return ePrev;
    }


    static void AddRightEdges(GLUtessellatorImpl tess, ActiveRegion regUp,
                              GLUhalfEdge eFirst, GLUhalfEdge eLast, GLUhalfEdge eTopLeft,
                              boolean cleanUp)
/*
 * Purpose: insert right-going edges into the edge dictionary, and update
 * winding numbers and mesh connectivity appropriately.  All right-going
 * edges share a common origin vOrg.  Edges are inserted CCW starting at
 * eFirst; the last edge inserted is eLast.Sym.Lnext.  If vOrg has any
 * left-going edges already processed, then eTopLeft must be the edge
 * such that an imaginary upward vertical segment from vOrg would be
 * contained between eTopLeft.Sym.Lnext and eTopLeft; otherwise eTopLeft
 * should be null.
 */ {
        ActiveRegion reg, regPrev;
        GLUhalfEdge e, ePrev;
        boolean firstTime = true;

        /* Insert the new right-going edges in the dictionary */
        e = eFirst;
        do {
            assert (Geom.VertLeq(e.Org, e.Sym.Org));
            AddRegionBelow(tess, regUp, e.Sym);
            e = e.Onext;
        } while (e != eLast);

        /* Walk *all* right-going edges from e.Org, in the dictionary order,
         * updating the winding numbers of each region, and re-linking the mesh
         * edges to match the dictionary ordering (if necessary).
         */
        if (eTopLeft == null) {
            eTopLeft = RegionBelow(regUp).eUp.Sym.Onext;
        }
        regPrev = regUp;
        ePrev = eTopLeft;
        for (; ;) {
            reg = RegionBelow(regPrev);
            e = reg.eUp.Sym;
            if (e.Org != ePrev.Org) break;

            if (e.Onext != ePrev) {
                /* Unlink e from its current position, and relink below ePrev */
                if (!Mesh.__gl_meshSplice(e.Sym.Lnext, e)) throw new RuntimeException();
                if (!Mesh.__gl_meshSplice(ePrev.Sym.Lnext, e)) throw new RuntimeException();
            }
            /* Compute the winding number and "inside" flag for the new regions */
            reg.windingNumber = regPrev.windingNumber - e.winding;
            reg.inside = IsWindingInside(tess, reg.windingNumber);

            /* Check for two outgoing edges with same slope -- process these
             * before any intersection tests (see example in __gl_computeInterior).
             */
            regPrev.dirty = true;
            if (!firstTime && CheckForRightSplice(tess, regPrev)) {
                AddWinding(e, ePrev);
                DeleteRegion(tess, regPrev);
                if (!Mesh.__gl_meshDelete(ePrev)) throw new RuntimeException();
            }
            firstTime = false;
            regPrev = reg;
            ePrev = e;
        }
        regPrev.dirty = true;
        assert (regPrev.windingNumber - e.winding == reg.windingNumber);

        if (cleanUp) {
            /* Check for intersections between newly adjacent edges. */
            WalkDirtyRegions(tess, regPrev);
        }
    }


    static void CallCombine(GLUtessellatorImpl tess, GLUvertex isect,
                            Object[] data, float[] weights, boolean needed) {
        double[] coords = new double[3];

        /* Copy coord data in case the callback changes it. */
        coords[0] = isect.coords[0];
        coords[1] = isect.coords[1];
        coords[2] = isect.coords[2];

        Object[] outData = new Object[1];
        tess.callCombineOrCombineData(coords, data, weights, outData);
        isect.data = outData[0];
        if (isect.data == null) {
            if (!needed) {
                isect.data = data[0];
            } else if (!tess.fatalError) {
                /* The only way fatal error is when two edges are found to intersect,
                 * but the user has not provided the callback necessary to handle
                 * generated intersection points.
                 */
                tess.callErrorOrErrorData(PGLU.GLU_TESS_NEED_COMBINE_CALLBACK);
                tess.fatalError = true;
            }
        }
    }

    static void SpliceMergeVertices(GLUtessellatorImpl tess, GLUhalfEdge e1,
                                    GLUhalfEdge e2)
/*
 * Two vertices with idential coordinates are combined into one.
 * e1.Org is kept, while e2.Org is discarded.
 */ {
        Object[] data = new Object[4];
        float[] weights = new float[]{0.5f, 0.5f, 0.0f, 0.0f};

        data[0] = e1.Org.data;
        data[1] = e2.Org.data;
        CallCombine(tess, e1.Org, data, weights, false);
        if (!Mesh.__gl_meshSplice(e1, e2)) throw new RuntimeException();
    }

    static void VertexWeights(GLUvertex isect, GLUvertex org, GLUvertex dst,
                              float[] weights)
/*
 * Find some weights which describe how the intersection vertex is
 * a linear combination of "org" and "dest".  Each of the two edges
 * which generated "isect" is allocated 50% of the weight; each edge
 * splits the weight between its org and dst according to the
 * relative distance to "isect".
 */ {
        double t1 = Geom.VertL1dist(org, isect);
        double t2 = Geom.VertL1dist(dst, isect);

        weights[0] = (float) (0.5 * t2 / (t1 + t2));
        weights[1] = (float) (0.5 * t1 / (t1 + t2));
        isect.coords[0] += weights[0] * org.coords[0] + weights[1] * dst.coords[0];
        isect.coords[1] += weights[0] * org.coords[1] + weights[1] * dst.coords[1];
        isect.coords[2] += weights[0] * org.coords[2] + weights[1] * dst.coords[2];
    }


    static void GetIntersectData(GLUtessellatorImpl tess, GLUvertex isect,
                                 GLUvertex orgUp, GLUvertex dstUp,
                                 GLUvertex orgLo, GLUvertex dstLo)
/*
 * We've computed a new intersection point, now we need a "data" pointer
 * from the user so that we can refer to this new vertex in the
 * rendering callbacks.
 */ {
        Object[] data = new Object[4];
        float[] weights = new float[4];
        float[] weights1 = new float[2];
        float[] weights2 = new float[2];

        data[0] = orgUp.data;
        data[1] = dstUp.data;
        data[2] = orgLo.data;
        data[3] = dstLo.data;

        isect.coords[0] = isect.coords[1] = isect.coords[2] = 0;
        VertexWeights(isect, orgUp, dstUp, weights1);
        VertexWeights(isect, orgLo, dstLo, weights2);
        System.arraycopy(weights1, 0, weights, 0, 2);
        System.arraycopy(weights2, 0, weights, 2, 2);

        CallCombine(tess, isect, data, weights, true);
    }

    static boolean CheckForRightSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp.Org is above eLo, or eLo.Org is below eUp (depending on which
 * origin is leftmost).
 *
 * The main purpose is to splice right-going edges with the same
 * dest vertex and nearly identical slopes (ie. we can't distinguish
 * the slopes numerically).  However the splicing can also help us
 * to recover from numerical errors.  For example, suppose at one
 * point we checked eUp and eLo, and decided that eUp.Org is barely
 * above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * our test so that now eUp.Org is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants.
 *
 * One possibility is to check these edges for intersection again
 * (ie. CheckForIntersect).  This is what we do if possible.  However
 * CheckForIntersect requires that tess.event lies between eUp and eLo,
 * so that it has something to fall back on when the intersection
 * calculation gives us an unusable answer.  So, for those cases where
 * we can't check for intersection, this routine fixes the problem
 * by just splicing the offending vertex into the other edge.
 * This is a guaranteed solution, no matter how degenerate things get.
 * Basically this is a combinatorial solution to a numerical problem.
 */ {
        ActiveRegion regLo = RegionBelow(regUp);
        GLUhalfEdge eUp = regUp.eUp;
        GLUhalfEdge eLo = regLo.eUp;

        if (Geom.VertLeq(eUp.Org, eLo.Org)) {
            if (Geom.EdgeSign(eLo.Sym.Org, eUp.Org, eLo.Org) > 0) return false;

            /* eUp.Org appears to be below eLo */
            if (!Geom.VertEq(eUp.Org, eLo.Org)) {
                /* Splice eUp.Org into eLo */
                if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
                if (!Mesh.__gl_meshSplice(eUp, eLo.Sym.Lnext)) throw new RuntimeException();
                regUp.dirty = regLo.dirty = true;

            } else if (eUp.Org != eLo.Org) {
                /* merge the two vertices, discarding eUp.Org */
                tess.pq.pqDelete(eUp.Org.pqHandle); /* __gl_pqSortDelete */
                SpliceMergeVertices(tess, eLo.Sym.Lnext, eUp);
            }
        } else {
            if (Geom.EdgeSign(eUp.Sym.Org, eLo.Org, eUp.Org) < 0) return false;

            /* eLo.Org appears to be above eUp, so splice eLo.Org into eUp */
            RegionAbove(regUp).dirty = regUp.dirty = true;
            if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
            if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
        }
        return true;
    }

    static boolean CheckForLeftSplice(GLUtessellatorImpl tess, ActiveRegion regUp)
/*
 * Check the upper and lower edge of "regUp", to make sure that the
 * eUp.Sym.Org is above eLo, or eLo.Sym.Org is below eUp (depending on which
 * destination is rightmost).
 *
 * Theoretically, this should always be true.  However, splitting an edge
 * into two pieces can change the results of previous tests.  For example,
 * suppose at one point we checked eUp and eLo, and decided that eUp.Sym.Org
 * is barely above eLo.  Then later, we split eLo into two edges (eg. from
 * a splice operation like this one).  This can change the result of
 * the test so that now eUp.Sym.Org is incident to eLo, or barely below it.
 * We must correct this condition to maintain the dictionary invariants
 * (otherwise new edges might get inserted in the wrong place in the
 * dictionary, and bad stuff will happen).
 *
 * We fix the problem by just splicing the offending vertex into the
 * other edge.
 */ {
        ActiveRegion regLo = RegionBelow(regUp);
        GLUhalfEdge eUp = regUp.eUp;
        GLUhalfEdge eLo = regLo.eUp;
        GLUhalfEdge e;

        assert (!Geom.VertEq(eUp.Sym.Org, eLo.Sym.Org));

        if (Geom.VertLeq(eUp.Sym.Org, eLo.Sym.Org)) {
            if (Geom.EdgeSign(eUp.Sym.Org, eLo.Sym.Org, eUp.Org) < 0) return false;

            /* eLo.Sym.Org is above eUp, so splice eLo.Sym.Org into eUp */
            RegionAbove(regUp).dirty = regUp.dirty = true;
            e = Mesh.__gl_meshSplitEdge(eUp);
            if (e == null) throw new RuntimeException();
            if (!Mesh.__gl_meshSplice(eLo.Sym, e)) throw new RuntimeException();
            e.Lface.inside = regUp.inside;
        } else {
            if (Geom.EdgeSign(eLo.Sym.Org, eUp.Sym.Org, eLo.Org) > 0) return false;

            /* eUp.Sym.Org is below eLo, so splice eUp.Sym.Org into eLo */
            regUp.dirty = regLo.dirty = true;
            e = Mesh.__gl_meshSplitEdge(eLo);
            if (e == null) throw new RuntimeException();
            if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym)) throw new RuntimeException();
            e.Sym.Lface.inside = regUp.inside;
        }
        return true;
    }


    static boolean CheckForIntersect(GLUtessellatorImpl tess, ActiveRegion regUp)
/*
 * Check the upper and lower edges of the given region to see if
 * they intersect.  If so, create the intersection and add it
 * to the data structures.
 *
 * Returns true if adding the new intersection resulted in a recursive
 * call to AddRightEdges(); in this case all "dirty" regions have been
 * checked for intersections, and possibly regUp has been deleted.
 */ {
        ActiveRegion regLo = RegionBelow(regUp);
        GLUhalfEdge eUp = regUp.eUp;
        GLUhalfEdge eLo = regLo.eUp;
        GLUvertex orgUp = eUp.Org;
        GLUvertex orgLo = eLo.Org;
        GLUvertex dstUp = eUp.Sym.Org;
        GLUvertex dstLo = eLo.Sym.Org;
        double tMinUp, tMaxLo;
        GLUvertex isect = new GLUvertex();
        GLUvertex orgMin;
        GLUhalfEdge e;

        assert (!Geom.VertEq(dstLo, dstUp));
        assert (Geom.EdgeSign(dstUp, tess.event, orgUp) <= 0);
        assert (Geom.EdgeSign(dstLo, tess.event, orgLo) >= 0);
        assert (orgUp != tess.event && orgLo != tess.event);
        assert (!regUp.fixUpperEdge && !regLo.fixUpperEdge);

        if (orgUp == orgLo) return false;    /* right endpoints are the same */

        tMinUp = Math.min(orgUp.t, dstUp.t);
        tMaxLo = Math.max(orgLo.t, dstLo.t);
        if (tMinUp > tMaxLo) return false;    /* t ranges do not overlap */

        if (Geom.VertLeq(orgUp, orgLo)) {
            if (Geom.EdgeSign(dstLo, orgUp, orgLo) > 0) return false;
        } else {
            if (Geom.EdgeSign(dstUp, orgLo, orgUp) < 0) return false;
        }

        /* At this point the edges intersect, at least marginally */
        DebugEvent(tess);

        Geom.EdgeIntersect(dstUp, orgUp, dstLo, orgLo, isect);
        /* The following properties are guaranteed: */
        assert (Math.min(orgUp.t, dstUp.t) <= isect.t);
        assert (isect.t <= Math.max(orgLo.t, dstLo.t));
        assert (Math.min(dstLo.s, dstUp.s) <= isect.s);
        assert (isect.s <= Math.max(orgLo.s, orgUp.s));

        if (Geom.VertLeq(isect, tess.event)) {
            /* The intersection point lies slightly to the left of the sweep line,
             * so move it until it''s slightly to the right of the sweep line.
             * (If we had perfect numerical precision, this would never happen
             * in the first place).  The easiest and safest thing to do is
             * replace the intersection by tess.event.
             */
            isect.s = tess.event.s;
            isect.t = tess.event.t;
        }
        /* Similarly, if the computed intersection lies to the right of the
         * rightmost origin (which should rarely happen), it can cause
         * unbelievable inefficiency on sufficiently degenerate inputs.
         * (If you have the test program, try running test54.d with the
         * "X zoom" option turned on).
         */
        orgMin = Geom.VertLeq(orgUp, orgLo) ? orgUp : orgLo;
        if (Geom.VertLeq(orgMin, isect)) {
            isect.s = orgMin.s;
            isect.t = orgMin.t;
        }

        if (Geom.VertEq(isect, orgUp) || Geom.VertEq(isect, orgLo)) {
            /* Easy case -- intersection at one of the right endpoints */
            CheckForRightSplice(tess, regUp);
            return false;
        }

        if ((!Geom.VertEq(dstUp, tess.event)
                && Geom.EdgeSign(dstUp, tess.event, isect) >= 0)
                || (!Geom.VertEq(dstLo, tess.event)
                && Geom.EdgeSign(dstLo, tess.event, isect) <= 0)) {
            /* Very unusual -- the new upper or lower edge would pass on the
             * wrong side of the sweep event, or through it.  This can happen
             * due to very small numerical errors in the intersection calculation.
             */
            if (dstLo == tess.event) {
                /* Splice dstLo into eUp, and process the new region(s) */
                if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
                if (!Mesh.__gl_meshSplice(eLo.Sym, eUp)) throw new RuntimeException();
                regUp = TopLeftRegion(regUp);
                if (regUp == null) throw new RuntimeException();
                eUp = RegionBelow(regUp).eUp;
                FinishLeftRegions(tess, RegionBelow(regUp), regLo);
                AddRightEdges(tess, regUp, eUp.Sym.Lnext, eUp, eUp, true);
                return true;
            }
            if (dstUp == tess.event) {
                /* Splice dstUp into eLo, and process the new region(s) */
                if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
                if (!Mesh.__gl_meshSplice(eUp.Lnext, eLo.Sym.Lnext)) throw new RuntimeException();
                regLo = regUp;
                regUp = TopRightRegion(regUp);
                e = RegionBelow(regUp).eUp.Sym.Onext;
                regLo.eUp = eLo.Sym.Lnext;
                eLo = FinishLeftRegions(tess, regLo, null);
                AddRightEdges(tess, regUp, eLo.Onext, eUp.Sym.Onext, e, true);
                return true;
            }
            /* Special case: called from ConnectRightVertex.  If either
             * edge passes on the wrong side of tess.event, split it
             * (and wait for ConnectRightVertex to splice it appropriately).
             */
            if (Geom.EdgeSign(dstUp, tess.event, isect) >= 0) {
                RegionAbove(regUp).dirty = regUp.dirty = true;
                if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
                eUp.Org.s = tess.event.s;
                eUp.Org.t = tess.event.t;
            }
            if (Geom.EdgeSign(dstLo, tess.event, isect) <= 0) {
                regUp.dirty = regLo.dirty = true;
                if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
                eLo.Org.s = tess.event.s;
                eLo.Org.t = tess.event.t;
            }
            /* leave the rest for ConnectRightVertex */
            return false;
        }

        /* General case -- split both edges, splice into new vertex.
         * When we do the splice operation, the order of the arguments is
         * arbitrary as far as correctness goes.  However, when the operation
         * creates a new face, the work done is proportional to the size of
         * the new face.  We expect the faces in the processed part of
         * the mesh (ie. eUp.Lface) to be smaller than the faces in the
         * unprocessed original contours (which will be eLo.Sym.Lnext.Lface).
         */
        if (Mesh.__gl_meshSplitEdge(eUp.Sym) == null) throw new RuntimeException();
        if (Mesh.__gl_meshSplitEdge(eLo.Sym) == null) throw new RuntimeException();
        if (!Mesh.__gl_meshSplice(eLo.Sym.Lnext, eUp)) throw new RuntimeException();
        eUp.Org.s = isect.s;
        eUp.Org.t = isect.t;
        eUp.Org.pqHandle = tess.pq.pqInsert(eUp.Org); /* __gl_pqSortInsert */
        if (eUp.Org.pqHandle == Long.MAX_VALUE) {
            tess.pq.pqDeletePriorityQ();    /* __gl_pqSortDeletePriorityQ */
            tess.pq = null;
            throw new RuntimeException();
        }
        GetIntersectData(tess, eUp.Org, orgUp, dstUp, orgLo, dstLo);
        RegionAbove(regUp).dirty = regUp.dirty = regLo.dirty = true;
        return false;
    }

    static void WalkDirtyRegions(GLUtessellatorImpl tess, ActiveRegion regUp)
/*
 * When the upper or lower edge of any region changes, the region is
 * marked "dirty".  This routine walks through all the dirty regions
 * and makes sure that the dictionary invariants are satisfied
 * (see the comments at the beginning of this file).  Of course
 * new dirty regions can be created as we make changes to restore
 * the invariants.
 */ {
        ActiveRegion regLo = RegionBelow(regUp);
        GLUhalfEdge eUp, eLo;

        for (; ;) {
            /* Find the lowest dirty region (we walk from the bottom up). */
            while (regLo.dirty) {
                regUp = regLo;
                regLo = RegionBelow(regLo);
            }
            if (!regUp.dirty) {
                regLo = regUp;
                regUp = RegionAbove(regUp);
                if (regUp == null || !regUp.dirty) {
                    /* We've walked all the dirty regions */
                    return;
                }
            }
            regUp.dirty = false;
            eUp = regUp.eUp;
            eLo = regLo.eUp;

            if (eUp.Sym.Org != eLo.Sym.Org) {
                /* Check that the edge ordering is obeyed at the Dst vertices. */
                if (CheckForLeftSplice(tess, regUp)) {

                    /* If the upper or lower edge was marked fixUpperEdge, then
                     * we no longer need it (since these edges are needed only for
                     * vertices which otherwise have no right-going edges).
                     */
                    if (regLo.fixUpperEdge) {
                        DeleteRegion(tess, regLo);
                        if (!Mesh.__gl_meshDelete(eLo)) throw new RuntimeException();
                        regLo = RegionBelow(regUp);
                        eLo = regLo.eUp;
                    } else if (regUp.fixUpperEdge) {
                        DeleteRegion(tess, regUp);
                        if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
                        regUp = RegionAbove(regLo);
                        eUp = regUp.eUp;
                    }
                }
            }
            if (eUp.Org != eLo.Org) {
                if (eUp.Sym.Org != eLo.Sym.Org
                        && !regUp.fixUpperEdge && !regLo.fixUpperEdge
                        && (eUp.Sym.Org == tess.event || eLo.Sym.Org == tess.event)) {
                    /* When all else fails in CheckForIntersect(), it uses tess.event
                     * as the intersection location.  To make this possible, it requires
                     * that tess.event lie between the upper and lower edges, and also
                     * that neither of these is marked fixUpperEdge (since in the worst
                     * case it might splice one of these edges into tess.event, and
                     * violate the invariant that fixable edges are the only right-going
                     * edge from their associated vertex).
                         */
                    if (CheckForIntersect(tess, regUp)) {
                        /* WalkDirtyRegions() was called recursively; we're done */
                        return;
                    }
                } else {
                    /* Even though we can't use CheckForIntersect(), the Org vertices
                     * may violate the dictionary edge ordering.  Check and correct this.
                     */
                    CheckForRightSplice(tess, regUp);
                }
            }
            if (eUp.Org == eLo.Org && eUp.Sym.Org == eLo.Sym.Org) {
                /* A degenerate loop consisting of only two edges -- delete it. */
                AddWinding(eLo, eUp);
                DeleteRegion(tess, regUp);
                if (!Mesh.__gl_meshDelete(eUp)) throw new RuntimeException();
                regUp = RegionAbove(regLo);
            }
        }
    }


    static void ConnectRightVertex(GLUtessellatorImpl tess, ActiveRegion regUp,
                                   GLUhalfEdge eBottomLeft)
/*
 * Purpose: connect a "right" vertex vEvent (one where all edges go left)
 * to the unprocessed portion of the mesh.  Since there are no right-going
 * edges, two regions (one above vEvent and one below) are being merged
 * into one.  "regUp" is the upper of these two regions.
 *
 * There are two reasons for doing this (adding a right-going edge):
 *  - if the two regions being merged are "inside", we must add an edge
 *    to keep them separated (the combined region would not be monotone).
 *  - in any case, we must leave some record of vEvent in the dictionary,
 *    so that we can merge vEvent with features that we have not seen yet.
 *    For example, maybe there is a vertical edge which passes just to
 *    the right of vEvent; we would like to splice vEvent into this edge.
 *
 * However, we don't want to connect vEvent to just any vertex.  We don''t
 * want the new edge to cross any other edges; otherwise we will create
 * intersection vertices even when the input data had no self-intersections.
 * (This is a bad thing; if the user's input data has no intersections,
 * we don't want to generate any false intersections ourselves.)
 *
 * Our eventual goal is to connect vEvent to the leftmost unprocessed
 * vertex of the combined region (the union of regUp and regLo).
 * But because of unseen vertices with all right-going edges, and also
 * new vertices which may be created by edge intersections, we don''t
 * know where that leftmost unprocessed vertex is.  In the meantime, we
 * connect vEvent to the closest vertex of either chain, and mark the region
 * as "fixUpperEdge".  This flag says to delete and reconnect this edge
 * to the next processed vertex on the boundary of the combined region.
 * Quite possibly the vertex we connected to will turn out to be the
 * closest one, in which case we won''t need to make any changes.
 */ {
        GLUhalfEdge eNew;
        GLUhalfEdge eTopLeft = eBottomLeft.Onext;
        ActiveRegion regLo = RegionBelow(regUp);
        GLUhalfEdge eUp = regUp.eUp;
        GLUhalfEdge eLo = regLo.eUp;
        boolean degenerate = false;

        if (eUp.Sym.Org != eLo.Sym.Org) {
            CheckForIntersect(tess, regUp);
        }

        /* Possible new degeneracies: upper or lower edge of regUp may pass
         * through vEvent, or may coincide with new intersection vertex
         */
        if (Geom.VertEq(eUp.Org, tess.event)) {
            if (!Mesh.__gl_meshSplice(eTopLeft.Sym.Lnext, eUp)) throw new RuntimeException();
            regUp = TopLeftRegion(regUp);
            if (regUp == null) throw new RuntimeException();
            eTopLeft = RegionBelow(regUp).eUp;
            FinishLeftRegions(tess, RegionBelow(regUp), regLo);
            degenerate = true;
        }
        if (Geom.VertEq(eLo.Org, tess.event)) {
            if (!Mesh.__gl_meshSplice(eBottomLeft, eLo.Sym.Lnext)) throw new RuntimeException();
            eBottomLeft = FinishLeftRegions(tess, regLo, null);
            degenerate = true;
        }
        if (degenerate) {
            AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
            return;
        }

        /* Non-degenerate situation -- need to add a temporary, fixable edge.
         * Connect to the closer of eLo.Org, eUp.Org.
         */
        if (Geom.VertLeq(eLo.Org, eUp.Org)) {
            eNew = eLo.Sym.Lnext;
        } else {
            eNew = eUp;
        }
        eNew = Mesh.__gl_meshConnect(eBottomLeft.Onext.Sym, eNew);
        if (eNew == null) throw new RuntimeException();

        /* Prevent cleanup, otherwise eNew might disappear before we've even
         * had a chance to mark it as a temporary edge.
         */
        AddRightEdges(tess, regUp, eNew, eNew.Onext, eNew.Onext, false);
        eNew.Sym.activeRegion.fixUpperEdge = true;
        WalkDirtyRegions(tess, regUp);
    }

/* Because vertices at exactly the same location are merged together
 * before we process the sweep event, some degenerate cases can't occur.
 * However if someone eventually makes the modifications required to
 * merge features which are close together, the cases below marked
 * TOLERANCE_NONZERO will be useful.  They were debugged before the
 * code to merge identical vertices in the main loop was added.
 */
    private static final boolean TOLERANCE_NONZERO = false;

    static void ConnectLeftDegenerate(GLUtessellatorImpl tess,
                                      ActiveRegion regUp, GLUvertex vEvent)
/*
 * The event vertex lies exacty on an already-processed edge or vertex.
 * Adding the new vertex involves splicing it into the already-processed
 * part of the mesh.
 */ {
        GLUhalfEdge e, eTopLeft, eTopRight, eLast;
        ActiveRegion reg;

        e = regUp.eUp;
        if (Geom.VertEq(e.Org, vEvent)) {
            /* e.Org is an unprocessed vertex - just combine them, and wait
             * for e.Org to be pulled from the queue
             */
            assert (TOLERANCE_NONZERO);
            SpliceMergeVertices(tess, e, vEvent.anEdge);
            return;
        }

        if (!Geom.VertEq(e.Sym.Org, vEvent)) {
            /* General case -- splice vEvent into edge e which passes through it */
            if (Mesh.__gl_meshSplitEdge(e.Sym) == null) throw new RuntimeException();
            if (regUp.fixUpperEdge) {
                /* This edge was fixable -- delete unused portion of original edge */
                if (!Mesh.__gl_meshDelete(e.Onext)) throw new RuntimeException();
                regUp.fixUpperEdge = false;
            }
            if (!Mesh.__gl_meshSplice(vEvent.anEdge, e)) throw new RuntimeException();
            SweepEvent(tess, vEvent);    /* recurse */
            return;
        }

        /* vEvent coincides with e.Sym.Org, which has already been processed.
         * Splice in the additional right-going edges.
         */
        assert (TOLERANCE_NONZERO);
        regUp = TopRightRegion(regUp);
        reg = RegionBelow(regUp);
        eTopRight = reg.eUp.Sym;
        eTopLeft = eLast = eTopRight.Onext;
        if (reg.fixUpperEdge) {
            /* Here e.Sym.Org has only a single fixable edge going right.
             * We can delete it since now we have some real right-going edges.
             */
            assert (eTopLeft != eTopRight);   /* there are some left edges too */
            DeleteRegion(tess, reg);
            if (!Mesh.__gl_meshDelete(eTopRight)) throw new RuntimeException();
            eTopRight = eTopLeft.Sym.Lnext;
        }
        if (!Mesh.__gl_meshSplice(vEvent.anEdge, eTopRight)) throw new RuntimeException();
        if (!Geom.EdgeGoesLeft(eTopLeft)) {
            /* e.Sym.Org had no left-going edges -- indicate this to AddRightEdges() */
            eTopLeft = null;
        }
        AddRightEdges(tess, regUp, eTopRight.Onext, eLast, eTopLeft, true);
    }


    static void ConnectLeftVertex(GLUtessellatorImpl tess, GLUvertex vEvent)
/*
 * Purpose: connect a "left" vertex (one where both edges go right)
 * to the processed portion of the mesh.  Let R be the active region
 * containing vEvent, and let U and L be the upper and lower edge
 * chains of R.  There are two possibilities:
 *
 * - the normal case: split R into two regions, by connecting vEvent to
 *   the rightmost vertex of U or L lying to the left of the sweep line
 *
 * - the degenerate case: if vEvent is close enough to U or L, we
 *   merge vEvent into that edge chain.  The subcases are:
 *    - merging with the rightmost vertex of U or L
 *    - merging with the active edge of U or L
 *    - merging with an already-processed portion of U or L
 */ {
        ActiveRegion regUp, regLo, reg;
        GLUhalfEdge eUp, eLo, eNew;
        ActiveRegion tmp = new ActiveRegion();

        /* assert ( vEvent.anEdge.Onext.Onext == vEvent.anEdge ); */

        /* Get a pointer to the active region containing vEvent */
        tmp.eUp = vEvent.anEdge.Sym;
        /* __GL_DICTLISTKEY */ /* __gl_dictListSearch */
        regUp = (ActiveRegion) Dict.dictKey(Dict.dictSearch(tess.dict, tmp));
        regLo = RegionBelow(regUp);
        eUp = regUp.eUp;
        eLo = regLo.eUp;

        /* Try merging with U or L first */
        if (Geom.EdgeSign(eUp.Sym.Org, vEvent, eUp.Org) == 0) {
            ConnectLeftDegenerate(tess, regUp, vEvent);
            return;
        }

        /* Connect vEvent to rightmost processed vertex of either chain.
         * e.Sym.Org is the vertex that we will connect to vEvent.
         */
        reg = Geom.VertLeq(eLo.Sym.Org, eUp.Sym.Org) ? regUp : regLo;

        if (regUp.inside || reg.fixUpperEdge) {
            if (reg == regUp) {
                eNew = Mesh.__gl_meshConnect(vEvent.anEdge.Sym, eUp.Lnext);
                if (eNew == null) throw new RuntimeException();
            } else {
                GLUhalfEdge tempHalfEdge = Mesh.__gl_meshConnect(eLo.Sym.Onext.Sym, vEvent.anEdge);
                if (tempHalfEdge == null) throw new RuntimeException();

                eNew = tempHalfEdge.Sym;
            }
            if (reg.fixUpperEdge) {
                if (!FixUpperEdge(reg, eNew)) throw new RuntimeException();
            } else {
                ComputeWinding(tess, AddRegionBelow(tess, regUp, eNew));
            }
            SweepEvent(tess, vEvent);
        } else {
            /* The new vertex is in a region which does not belong to the polygon.
             * We don''t need to connect this vertex to the rest of the mesh.
             */
            AddRightEdges(tess, regUp, vEvent.anEdge, vEvent.anEdge, null, true);
        }
    }


    static void SweepEvent(GLUtessellatorImpl tess, GLUvertex vEvent)
/*
 * Does everything necessary when the sweep line crosses a vertex.
 * Updates the mesh and the edge dictionary.
 */ {
        ActiveRegion regUp, reg;
        GLUhalfEdge e, eTopLeft, eBottomLeft;

        tess.event = vEvent;        /* for access in EdgeLeq() */
        DebugEvent(tess);

        /* Check if this vertex is the right endpoint of an edge that is
         * already in the dictionary.  In this case we don't need to waste
         * time searching for the location to insert new edges.
         */
        e = vEvent.anEdge;
        while (e.activeRegion == null) {
            e = e.Onext;
            if (e == vEvent.anEdge) {
                /* All edges go right -- not incident to any processed edges */
                ConnectLeftVertex(tess, vEvent);
                return;
            }
        }

        /* Processing consists of two phases: first we "finish" all the
         * active regions where both the upper and lower edges terminate
         * at vEvent (ie. vEvent is closing off these regions).
         * We mark these faces "inside" or "outside" the polygon according
         * to their winding number, and delete the edges from the dictionary.
         * This takes care of all the left-going edges from vEvent.
         */
        regUp = TopLeftRegion(e.activeRegion);
        if (regUp == null) throw new RuntimeException();
        reg = RegionBelow(regUp);
        eTopLeft = reg.eUp;
        eBottomLeft = FinishLeftRegions(tess, reg, null);

        /* Next we process all the right-going edges from vEvent.  This
         * involves adding the edges to the dictionary, and creating the
         * associated "active regions" which record information about the
         * regions between adjacent dictionary edges.
         */
        if (eBottomLeft.Onext == eTopLeft) {
            /* No right-going edges -- add a temporary "fixable" edge */
            ConnectRightVertex(tess, regUp, eBottomLeft);
        } else {
            AddRightEdges(tess, regUp, eBottomLeft.Onext, eTopLeft, eTopLeft, true);
        }
    }


/* Make the sentinel coordinates big enough that they will never be
 * merged with real input features.  (Even with the largest possible
 * input contour and the maximum tolerance of 1.0, no merging will be
 * done with coordinates larger than 3 * GLU_TESS_MAX_COORD).
 */
    private static final double SENTINEL_COORD = (4.0 * PGLU.GLU_TESS_MAX_COORD);

    static void AddSentinel(GLUtessellatorImpl tess, double t)
/*
 * We add two sentinel edges above and below all other edges,
 * to avoid special cases at the top and bottom.
 */ {
        GLUhalfEdge e;
        ActiveRegion reg = new ActiveRegion();
        if (reg == null) throw new RuntimeException();

        e = Mesh.__gl_meshMakeEdge(tess.mesh);
        if (e == null) throw new RuntimeException();

        e.Org.s = SENTINEL_COORD;
        e.Org.t = t;
        e.Sym.Org.s = -SENTINEL_COORD;
        e.Sym.Org.t = t;
        tess.event = e.Sym.Org;        /* initialize it */

        reg.eUp = e;
        reg.windingNumber = 0;
        reg.inside = false;
        reg.fixUpperEdge = false;
        reg.sentinel = true;
        reg.dirty = false;
        reg.nodeUp = Dict.dictInsert(tess.dict, reg); /* __gl_dictListInsertBefore */
        if (reg.nodeUp == null) throw new RuntimeException();
    }


    static void InitEdgeDict(final GLUtessellatorImpl tess)
/*
 * We maintain an ordering of edge intersections with the sweep line.
 * This order is maintained in a dynamic dictionary.
 */ {
        /* __gl_dictListNewDict */
        tess.dict = Dict.dictNewDict(tess, new Dict.DictLeq() {
            public boolean leq(Object frame, Object key1, Object key2) {
                return EdgeLeq(tess, (ActiveRegion) key1, (ActiveRegion) key2);
            }
        });
        if (tess.dict == null) throw new RuntimeException();

        AddSentinel(tess, -SENTINEL_COORD);
        AddSentinel(tess, SENTINEL_COORD);
    }


    static void DoneEdgeDict(GLUtessellatorImpl tess) {
        ActiveRegion reg;
        int fixedEdges = 0;

        /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
        while ((reg = (ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))) != null) {
            /*
             * At the end of all processing, the dictionary should contain
             * only the two sentinel edges, plus at most one "fixable" edge
             * created by ConnectRightVertex().
             */
            if (!reg.sentinel) {
                assert (reg.fixUpperEdge);
                assert (++fixedEdges == 1);
            }
            assert (reg.windingNumber == 0);
            DeleteRegion(tess, reg);
/*    __gl_meshDelete( reg.eUp );*/
        }
        Dict.dictDeleteDict(tess.dict);    /* __gl_dictListDeleteDict */
    }


    static void RemoveDegenerateEdges(GLUtessellatorImpl tess)
/*
 * Remove zero-length edges, and contours with fewer than 3 vertices.
 */ {
        GLUhalfEdge e, eNext, eLnext;
        GLUhalfEdge eHead = tess.mesh.eHead;

        /*LINTED*/
        for (e = eHead.next; e != eHead; e = eNext) {
            eNext = e.next;
            eLnext = e.Lnext;

            if (Geom.VertEq(e.Org, e.Sym.Org) && e.Lnext.Lnext != e) {
                /* Zero-length edge, contour has at least 3 edges */

                SpliceMergeVertices(tess, eLnext, e);    /* deletes e.Org */
                if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException(); /* e is a self-loop */
                e = eLnext;
                eLnext = e.Lnext;
            }
            if (eLnext.Lnext == e) {
                /* Degenerate contour (one or two edges) */

                if (eLnext != e) {
                    if (eLnext == eNext || eLnext == eNext.Sym) {
                        eNext = eNext.next;
                    }
                    if (!Mesh.__gl_meshDelete(eLnext)) throw new RuntimeException();
                }
                if (e == eNext || e == eNext.Sym) {
                    eNext = eNext.next;
                }
                if (!Mesh.__gl_meshDelete(e)) throw new RuntimeException();
            }
        }
    }

    static boolean InitPriorityQ(GLUtessellatorImpl tess)
/*
 * Insert all vertices into the priority queue which determines the
 * order in which vertices cross the sweep line.
 */ {
        PriorityQ pq;
        GLUvertex v, vHead;

        /* __gl_pqSortNewPriorityQ */
        pq = tess.pq = PriorityQ.pqNewPriorityQ(new PriorityQ.Leq() {
            public boolean leq(Object key1, Object key2) {
                return Geom.VertLeq(((GLUvertex) key1), (GLUvertex) key2);
            }
        });
        if (pq == null) return false;

        vHead = tess.mesh.vHead;
        for (v = vHead.next; v != vHead; v = v.next) {
            v.pqHandle = pq.pqInsert(v); /* __gl_pqSortInsert */
            if (v.pqHandle == Long.MAX_VALUE) break;
        }
        if (v != vHead || !pq.pqInit()) { /* __gl_pqSortInit */
            tess.pq.pqDeletePriorityQ();    /* __gl_pqSortDeletePriorityQ */
            tess.pq = null;
            return false;
        }

        return true;
    }


    static void DonePriorityQ(GLUtessellatorImpl tess) {
        tess.pq.pqDeletePriorityQ(); /* __gl_pqSortDeletePriorityQ */
    }


    static boolean RemoveDegenerateFaces(GLUmesh mesh)
/*
 * Delete any degenerate faces with only two edges.  WalkDirtyRegions()
 * will catch almost all of these, but it won't catch degenerate faces
 * produced by splice operations on already-processed edges.
 * The two places this can happen are in FinishLeftRegions(), when
 * we splice in a "temporary" edge produced by ConnectRightVertex(),
 * and in CheckForLeftSplice(), where we splice already-processed
 * edges to ensure that our dictionary invariants are not violated
 * by numerical errors.
 *
 * In both these cases it is *very* dangerous to delete the offending
 * edge at the time, since one of the routines further up the stack
 * will sometimes be keeping a pointer to that edge.
 */ {
        GLUface f, fNext;
        GLUhalfEdge e;

        /*LINTED*/
        for (f = mesh.fHead.next; f != mesh.fHead; f = fNext) {
            fNext = f.next;
            e = f.anEdge;
            assert (e.Lnext != e);

            if (e.Lnext.Lnext == e) {
                /* A face with only two edges */
                AddWinding(e.Onext, e);
                if (!Mesh.__gl_meshDelete(e)) return false;
            }
        }
        return true;
    }

    public static boolean __gl_computeInterior(GLUtessellatorImpl tess)
/*
 * __gl_computeInterior( tess ) computes the planar arrangement specified
 * by the given contours, and further subdivides this arrangement
 * into regions.  Each region is marked "inside" if it belongs
 * to the polygon, according to the rule given by tess.windingRule.
 * Each interior region is guaranteed be monotone.
 */ {
        GLUvertex v, vNext;

        tess.fatalError = false;

        /* Each vertex defines an event for our sweep line.  Start by inserting
         * all the vertices in a priority queue.  Events are processed in
         * lexicographic order, ie.
         *
         *    e1 < e2  iff  e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y)
         */
        RemoveDegenerateEdges(tess);
        if (!InitPriorityQ(tess)) return false; /* if error */
        InitEdgeDict(tess);

        /* __gl_pqSortExtractMin */
        while ((v = (GLUvertex) tess.pq.pqExtractMin()) != null) {
            for (; ;) {
                vNext = (GLUvertex) tess.pq.pqMinimum(); /* __gl_pqSortMinimum */
                if (vNext == null || !Geom.VertEq(vNext, v)) break;

                /* Merge together all vertices at exactly the same location.
                 * This is more efficient than processing them one at a time,
                 * simplifies the code (see ConnectLeftDegenerate), and is also
                 * important for correct handling of certain degenerate cases.
                 * For example, suppose there are two identical edges A and B
                 * that belong to different contours (so without this code they would
                 * be processed by separate sweep events).  Suppose another edge C
                 * crosses A and B from above.  When A is processed, we split it
                 * at its intersection point with C.  However this also splits C,
                 * so when we insert B we may compute a slightly different
                 * intersection point.  This might leave two edges with a small
                 * gap between them.  This kind of error is especially obvious
                 * when using boundary extraction (GLU_TESS_BOUNDARY_ONLY).
                 */
                vNext = (GLUvertex) tess.pq.pqExtractMin(); /* __gl_pqSortExtractMin*/
                SpliceMergeVertices(tess, v.anEdge, vNext.anEdge);
            }
            SweepEvent(tess, v);
        }

        /* Set tess.event for debugging purposes */
        /* __GL_DICTLISTKEY */ /* __GL_DICTLISTMIN */
        tess.event = ((ActiveRegion) Dict.dictKey(Dict.dictMin(tess.dict))).eUp.Org;
        DebugEvent(tess);
        DoneEdgeDict(tess);
        DonePriorityQ(tess);

        if (!RemoveDegenerateFaces(tess.mesh)) return false;
        Mesh.__gl_meshCheckMesh(tess.mesh);

        return true;
    }
}




Java Source Code List

.AccelerometerManager.java
.CompassManager.java
com.processing.core.PApplet.java
com.processing.core.PConstants.java
com.processing.core.PFont.java
com.processing.core.PGraphicsAndroid2D.java
com.processing.core.PGraphics.java
com.processing.core.PImage.java
com.processing.core.PMatrix2D.java
com.processing.core.PMatrix3D.java
com.processing.core.PMatrix.java
com.processing.core.PShapeOBJ.java
com.processing.core.PShapeSVG.java
com.processing.core.PShape.java
com.processing.core.PStyle.java
com.processing.core.PVector.java
com.processing.data.FloatDict.java
com.processing.data.FloatList.java
com.processing.data.IntDict.java
com.processing.data.IntList.java
com.processing.data.JSONArray.java
com.processing.data.JSONObject.java
com.processing.data.JSONTokener.java
com.processing.data.Sort.java
com.processing.data.StringDict.java
com.processing.data.StringList.java
com.processing.data.TableRow.java
com.processing.data.Table.java
com.processing.data.XML.java
com.processing.event.Event.java
com.processing.event.KeyEvent.java
com.processing.event.MouseEvent.java
com.processing.event.TouchEvent.java
com.processing.opengl.FontTexture.java
com.processing.opengl.FrameBuffer.java
com.processing.opengl.LinePath.java
com.processing.opengl.LineStroker.java
com.processing.opengl.PGLES.java
com.processing.opengl.PGL.java
com.processing.opengl.PGraphics2D.java
com.processing.opengl.PGraphics3D.java
com.processing.opengl.PGraphicsOpenGL.java
com.processing.opengl.PShader.java
com.processing.opengl.PShapeOpenGL.java
com.processing.opengl.Texture.java
com.processing.opengl.tess.ActiveRegion.java
com.processing.opengl.tess.CachedVertex.java
com.processing.opengl.tess.DictNode.java
com.processing.opengl.tess.Dict.java
com.processing.opengl.tess.GLUface.java
com.processing.opengl.tess.GLUhalfEdge.java
com.processing.opengl.tess.GLUmesh.java
com.processing.opengl.tess.GLUtessellatorImpl.java
com.processing.opengl.tess.GLUvertex.java
com.processing.opengl.tess.Geom.java
com.processing.opengl.tess.Mesh.java
com.processing.opengl.tess.Normal.java
com.processing.opengl.tess.PGLU.java
com.processing.opengl.tess.PGLUtessellatorCallbackAdapter.java
com.processing.opengl.tess.PGLUtessellatorCallback.java
com.processing.opengl.tess.PGLUtessellator.java
com.processing.opengl.tess.PriorityQHeap.java
com.processing.opengl.tess.PriorityQSort.java
com.processing.opengl.tess.PriorityQ.java
com.processing.opengl.tess.Render.java
com.processing.opengl.tess.Sweep.java
com.processing.opengl.tess.TessMono.java
com.processing.opengl.tess.TessState.java
processing.mode.android.AVD.java
processing.mode.android.AndroidBuild.java
processing.mode.android.AndroidEditor.java
processing.mode.android.AndroidMode.java
processing.mode.android.AndroidPreprocessor.java
processing.mode.android.AndroidRunner.java
processing.mode.android.AndroidSDK.java
processing.mode.android.AndroidToolbar.java
processing.mode.android.BadSDKException.java
processing.mode.android.Commander.java
processing.mode.android.DeviceListener.java
processing.mode.android.Device.java
processing.mode.android.Devices.java
processing.mode.android.EmulatorController.java
processing.mode.android.Export.java
processing.mode.android.Keys.java
processing.mode.android.LogEntry.java
processing.mode.android.Manifest.java
processing.mode.android.Permissions.java