Android Open Source - Processing-Android-Eclipse-Demos Render






From Project

Back to project page Processing-Android-Eclipse-Demos.

License

The source code is released under:

MIT License

If you think the Android project Processing-Android-Eclipse-Demos listed in this page is inappropriate, such as containing malicious code/tools or violating the copyright, please email info at java2s dot com, thanks.

Java Source Code

/*
* Portions Copyright (C) 2003-2006 Sun Microsystems, Inc.
* All rights reserved./*from  w w  w .j a  va 2s  .c om*/
*/

/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 2.0 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** NOTE:  The Original Code (as defined below) has been licensed to Sun
** Microsystems, Inc. ("Sun") under the SGI Free Software License B
** (Version 1.1), shown above ("SGI License").   Pursuant to Section
** 3.2(3) of the SGI License, Sun is distributing the Covered Code to
** you under an alternative license ("Alternative License").  This
** Alternative License includes all of the provisions of the SGI License
** except that Section 2.2 and 11 are omitted.  Any differences between
** the Alternative License and the SGI License are offered solely by Sun
** and not by SGI.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
** Author: Eric Veach, July 1994
** Java Port: Pepijn Van Eeckhoudt, July 2003
** Java Port: Nathan Parker Burg, August 2003
** Processing integration: Andres Colubri, February 2012
*/

package com.processing.opengl.tess;

import android.opengl.GLES20;

class Render {
    private static final boolean USE_OPTIMIZED_CODE_PATH = false;

    private Render() {
    }

    private static final RenderFan renderFan = new RenderFan();
    private static final RenderStrip renderStrip = new RenderStrip();
    private static final RenderTriangle renderTriangle = new RenderTriangle();

/* This structure remembers the information we need about a primitive
 * to be able to render it later, once we have determined which
 * primitive is able to use the most triangles.
 */
    private static class FaceCount {
        public FaceCount() {
        }

        public FaceCount(long size, GLUhalfEdge eStart, renderCallBack render) {
            this.size = size;
            this.eStart = eStart;
            this.render = render;
        }

        long size;        /* number of triangles used */
        GLUhalfEdge eStart;    /* edge where this primitive starts */
        renderCallBack render;
    };

    private static interface renderCallBack {
        void render(GLUtessellatorImpl tess, GLUhalfEdge e, long size);
    }

    /************************ Strips and Fans decomposition ******************/

/* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
 * fans, strips, and separate triangles.  A substantial effort is made
 * to use as few rendering primitives as possible (ie. to make the fans
 * and strips as large as possible).
 *
 * The rendering output is provided as callbacks (see the api).
 */
    public static void __gl_renderMesh(GLUtessellatorImpl tess, GLUmesh mesh) {
        GLUface f;

        /* Make a list of separate triangles so we can render them all at once */
        tess.lonelyTriList = null;

        for (f = mesh.fHead.next; f != mesh.fHead; f = f.next) {
            f.marked = false;
        }
        for (f = mesh.fHead.next; f != mesh.fHead; f = f.next) {

            /* We examine all faces in an arbitrary order.  Whenever we find
             * an unprocessed face F, we output a group of faces including F
             * whose size is maximum.
             */
            if (f.inside && !f.marked) {
                RenderMaximumFaceGroup(tess, f);
                assert (f.marked);
            }
        }
        if (tess.lonelyTriList != null) {
            RenderLonelyTriangles(tess, tess.lonelyTriList);
            tess.lonelyTriList = null;
        }
    }


    static void RenderMaximumFaceGroup(GLUtessellatorImpl tess, GLUface fOrig) {
        /* We want to find the largest triangle fan or strip of unmarked faces
         * which includes the given face fOrig.  There are 3 possible fans
         * passing through fOrig (one centered at each vertex), and 3 possible
         * strips (one for each CCW permutation of the vertices).  Our strategy
         * is to try all of these, and take the primitive which uses the most
         * triangles (a greedy approach).
         */
        GLUhalfEdge e = fOrig.anEdge;
        FaceCount max = new FaceCount();
        FaceCount newFace = new FaceCount();

        max.size = 1;
        max.eStart = e;
        max.render = renderTriangle;

        if (!tess.flagBoundary) {
            newFace = MaximumFan(e);
            if (newFace.size > max.size) {
                max = newFace;
            }
            newFace = MaximumFan(e.Lnext);
            if (newFace.size > max.size) {
                max = newFace;
            }
            newFace = MaximumFan(e.Onext.Sym);
            if (newFace.size > max.size) {
                max = newFace;
            }

            newFace = MaximumStrip(e);
            if (newFace.size > max.size) {
                max = newFace;
            }
            newFace = MaximumStrip(e.Lnext);
            if (newFace.size > max.size) {
                max = newFace;
            }
            newFace = MaximumStrip(e.Onext.Sym);
            if (newFace.size > max.size) {
                max = newFace;
            }
        }
        max.render.render(tess, max.eStart, max.size);
    }


/* Macros which keep track of faces we have marked temporarily, and allow
 * us to backtrack when necessary.  With triangle fans, this is not
 * really necessary, since the only awkward case is a loop of triangles
 * around a single origin vertex.  However with strips the situation is
 * more complicated, and we need a general tracking method like the
 * one here.
 */
    private static boolean Marked(GLUface f) {
        return !f.inside || f.marked;
    }

    private static GLUface AddToTrail(GLUface f, GLUface t) {
        f.trail = t;
        f.marked = true;
        return f;
    }

    private static void FreeTrail(GLUface t) {
        if (true) {
            while (t != null) {
                t.marked = false;
                t = t.trail;
            }
        } else {
            /* absorb trailing semicolon */
        }
    }

    static FaceCount MaximumFan(GLUhalfEdge eOrig) {
        /* eOrig.Lface is the face we want to render.  We want to find the size
         * of a maximal fan around eOrig.Org.  To do this we just walk around
         * the origin vertex as far as possible in both directions.
         */
        FaceCount newFace = new FaceCount(0, null, renderFan);
        GLUface trail = null;
        GLUhalfEdge e;

        for (e = eOrig; !Marked(e.Lface); e = e.Onext) {
            trail = AddToTrail(e.Lface, trail);
            ++newFace.size;
        }
        for (e = eOrig; !Marked(e.Sym.Lface); e = e.Sym.Lnext) {
            trail = AddToTrail(e.Sym.Lface, trail);
            ++newFace.size;
        }
        newFace.eStart = e;
        /*LINTED*/
        FreeTrail(trail);
        return newFace;
    }


    private static boolean IsEven(long n) {
        return (n & 0x1L) == 0;
    }

    static FaceCount MaximumStrip(GLUhalfEdge eOrig) {
        /* Here we are looking for a maximal strip that contains the vertices
         * eOrig.Org, eOrig.Dst, eOrig.Lnext.Dst (in that order or the
         * reverse, such that all triangles are oriented CCW).
         *
         * Again we walk forward and backward as far as possible.  However for
         * strips there is a twist: to get CCW orientations, there must be
         * an *even* number of triangles in the strip on one side of eOrig.
         * We walk the strip starting on a side with an even number of triangles;
         * if both side have an odd number, we are forced to shorten one side.
         */
        FaceCount newFace = new FaceCount(0, null, renderStrip);
        long headSize = 0, tailSize = 0;
        GLUface trail = null;
        GLUhalfEdge e, eTail, eHead;

        for (e = eOrig; !Marked(e.Lface); ++tailSize, e = e.Onext) {
            trail = AddToTrail(e.Lface, trail);
            ++tailSize;
            e = e.Lnext.Sym;
            if (Marked(e.Lface)) break;
            trail = AddToTrail(e.Lface, trail);
        }
        eTail = e;

        for (e = eOrig; !Marked(e.Sym.Lface); ++headSize, e = e.Sym.Onext.Sym) {
            trail = AddToTrail(e.Sym.Lface, trail);
            ++headSize;
            e = e.Sym.Lnext;
            if (Marked(e.Sym.Lface)) break;
            trail = AddToTrail(e.Sym.Lface, trail);
        }
        eHead = e;

        newFace.size = tailSize + headSize;
        if (IsEven(tailSize)) {
            newFace.eStart = eTail.Sym;
        } else if (IsEven(headSize)) {
            newFace.eStart = eHead;
        } else {
            /* Both sides have odd length, we must shorten one of them.  In fact,
             * we must start from eHead to guarantee inclusion of eOrig.Lface.
             */
            --newFace.size;
            newFace.eStart = eHead.Onext;
        }
        /*LINTED*/
        FreeTrail(trail);
        return newFace;
    }

    private static class RenderTriangle implements renderCallBack {
        public void render(GLUtessellatorImpl tess, GLUhalfEdge e, long size) {
            /* Just add the triangle to a triangle list, so we can render all
             * the separate triangles at once.
             */
            assert (size == 1);
            tess.lonelyTriList = AddToTrail(e.Lface, tess.lonelyTriList);
        }
    }


    static void RenderLonelyTriangles(GLUtessellatorImpl tess, GLUface f) {
        /* Now we render all the separate triangles which could not be
         * grouped into a triangle fan or strip.
         */
        GLUhalfEdge e;
        int newState;
        int edgeState = -1;    /* force edge state output for first vertex */

        tess.callBeginOrBeginData(GLES20.GL_TRIANGLES);

        for (; f != null; f = f.trail) {
            /* Loop once for each edge (there will always be 3 edges) */

            e = f.anEdge;
            do {
                if (tess.flagBoundary) {
                    /* Set the "edge state" to true just before we output the
                     * first vertex of each edge on the polygon boundary.
                     */
                    newState = (!e.Sym.Lface.inside) ? 1 : 0;
                    if (edgeState != newState) {
                        edgeState = newState;
                        tess.callEdgeFlagOrEdgeFlagData( edgeState != 0);
                    }
                }
                tess.callVertexOrVertexData( e.Org.data);

                e = e.Lnext;
            } while (e != f.anEdge);
        }
        tess.callEndOrEndData();
    }

    private static class RenderFan implements renderCallBack {
        public void render(GLUtessellatorImpl tess, GLUhalfEdge e, long size) {
            /* Render as many CCW triangles as possible in a fan starting from
             * edge "e".  The fan *should* contain exactly "size" triangles
             * (otherwise we've goofed up somewhere).
             */
            tess.callBeginOrBeginData(GLES20.GL_TRIANGLE_FAN);
            tess.callVertexOrVertexData( e.Org.data);
            tess.callVertexOrVertexData( e.Sym.Org.data);

            while (!Marked(e.Lface)) {
                e.Lface.marked = true;
                --size;
                e = e.Onext;
                tess.callVertexOrVertexData( e.Sym.Org.data);
            }

            assert (size == 0);
            tess.callEndOrEndData();
        }
    }

    private static class RenderStrip implements renderCallBack {
        public void render(GLUtessellatorImpl tess, GLUhalfEdge e, long size) {
            /* Render as many CCW triangles as possible in a strip starting from
             * edge "e".  The strip *should* contain exactly "size" triangles
             * (otherwise we've goofed up somewhere).
             */
            tess.callBeginOrBeginData(GLES20.GL_TRIANGLE_STRIP);
            tess.callVertexOrVertexData( e.Org.data);
            tess.callVertexOrVertexData( e.Sym.Org.data);

            while (!Marked(e.Lface)) {
                e.Lface.marked = true;
                --size;
                e = e.Lnext.Sym;
                tess.callVertexOrVertexData( e.Org.data);
                if (Marked(e.Lface)) break;

                e.Lface.marked = true;
                --size;
                e = e.Onext;
                tess.callVertexOrVertexData( e.Sym.Org.data);
            }

            assert (size == 0);
            tess.callEndOrEndData();
        }
    }

    /************************ Boundary contour decomposition ******************/

/* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
 * contour for each face marked "inside".  The rendering output is
 * provided as callbacks (see the api).
 */
    public static void __gl_renderBoundary(GLUtessellatorImpl tess, GLUmesh mesh) {
        GLUface f;
        GLUhalfEdge e;

        for (f = mesh.fHead.next; f != mesh.fHead; f = f.next) {
            if (f.inside) {
                tess.callBeginOrBeginData(GLES20.GL_LINE_LOOP);
                e = f.anEdge;
                do {
                    tess.callVertexOrVertexData( e.Org.data);
                    e = e.Lnext;
                } while (e != f.anEdge);
                tess.callEndOrEndData();
            }
        }
    }


    /************************ Quick-and-dirty decomposition ******************/

    private static final int SIGN_INCONSISTENT = 2;

    static int ComputeNormal(GLUtessellatorImpl tess, double[] norm, boolean check)
/*
 * If check==false, we compute the polygon normal and place it in norm[].
 * If check==true, we check that each triangle in the fan from v0 has a
 * consistent orientation with respect to norm[].  If triangles are
 * consistently oriented CCW, return 1; if CW, return -1; if all triangles
 * are degenerate return 0; otherwise (no consistent orientation) return
 * SIGN_INCONSISTENT.
 */ {
        CachedVertex[] v = tess.cache;
//            CachedVertex vn = v0 + tess.cacheCount;
        int vn = tess.cacheCount;
//            CachedVertex vc;
        int vc;
        double dot, xc, yc, zc, xp, yp, zp;
        double[] n = new double[3];
        int sign = 0;

        /* Find the polygon normal.  It is important to get a reasonable
         * normal even when the polygon is self-intersecting (eg. a bowtie).
         * Otherwise, the computed normal could be very tiny, but perpendicular
         * to the true plane of the polygon due to numerical noise.  Then all
         * the triangles would appear to be degenerate and we would incorrectly
         * decompose the polygon as a fan (or simply not render it at all).
         *
         * We use a sum-of-triangles normal algorithm rather than the more
         * efficient sum-of-trapezoids method (used in CheckOrientation()
         * in normal.c).  This lets us explicitly reverse the signed area
         * of some triangles to get a reasonable normal in the self-intersecting
         * case.
         */
        if (!check) {
            norm[0] = norm[1] = norm[2] = 0.0;
        }

        vc = 1;
        xc = v[vc].coords[0] - v[0].coords[0];
        yc = v[vc].coords[1] - v[0].coords[1];
        zc = v[vc].coords[2] - v[0].coords[2];
        while (++vc < vn) {
            xp = xc;
            yp = yc;
            zp = zc;
            xc = v[vc].coords[0] - v[0].coords[0];
            yc = v[vc].coords[1] - v[0].coords[1];
            zc = v[vc].coords[2] - v[0].coords[2];

            /* Compute (vp - v0) cross (vc - v0) */
            n[0] = yp * zc - zp * yc;
            n[1] = zp * xc - xp * zc;
            n[2] = xp * yc - yp * xc;

            dot = n[0] * norm[0] + n[1] * norm[1] + n[2] * norm[2];
            if (!check) {
                /* Reverse the contribution of back-facing triangles to get
                 * a reasonable normal for self-intersecting polygons (see above)
                 */
                if (dot >= 0) {
                    norm[0] += n[0];
                    norm[1] += n[1];
                    norm[2] += n[2];
                } else {
                    norm[0] -= n[0];
                    norm[1] -= n[1];
                    norm[2] -= n[2];
                }
            } else if (dot != 0) {
                /* Check the new orientation for consistency with previous triangles */
                if (dot > 0) {
                    if (sign < 0) return SIGN_INCONSISTENT;
                    sign = 1;
                } else {
                    if (sign > 0) return SIGN_INCONSISTENT;
                    sign = -1;
                }
            }
        }
        return sign;
    }

/* __gl_renderCache( tess ) takes a single contour and tries to render it
 * as a triangle fan.  This handles convex polygons, as well as some
 * non-convex polygons if we get lucky.
 *
 * Returns true if the polygon was successfully rendered.  The rendering
 * output is provided as callbacks (see the api).
 */
    public static boolean __gl_renderCache(GLUtessellatorImpl tess) {
        CachedVertex[] v = tess.cache;
//            CachedVertex vn = v0 + tess.cacheCount;
        int vn = tess.cacheCount;
//            CachedVertex vc;
        int vc;
        double[] norm = new double[3];
        int sign;

        if (tess.cacheCount < 3) {
            /* Degenerate contour -- no output */
            return true;
        }

        norm[0] = tess.normal[0];
        norm[1] = tess.normal[1];
        norm[2] = tess.normal[2];
        if (norm[0] == 0 && norm[1] == 0 && norm[2] == 0) {
            ComputeNormal( tess, norm, false);
        }

        sign = ComputeNormal( tess, norm, true);
        if (sign == SIGN_INCONSISTENT) {
            /* Fan triangles did not have a consistent orientation */
            return false;
        }
        if (sign == 0) {
            /* All triangles were degenerate */
            return true;
        }

        if ( !USE_OPTIMIZED_CODE_PATH ) {
            return false;
        } else {
            /* Make sure we do the right thing for each winding rule */
            switch (tess.windingRule) {
                case PGLU.GLU_TESS_WINDING_ODD:
                case PGLU.GLU_TESS_WINDING_NONZERO:
                    break;
                case PGLU.GLU_TESS_WINDING_POSITIVE:
                    if (sign < 0) return true;
                    break;
                case PGLU.GLU_TESS_WINDING_NEGATIVE:
                    if (sign > 0) return true;
                    break;
                case PGLU.GLU_TESS_WINDING_ABS_GEQ_TWO:
                    return true;
            }

            tess.callBeginOrBeginData( tess.boundaryOnly ? GLES20.GL_LINE_LOOP
                    : (tess.cacheCount > 3) ? GLES20.GL_TRIANGLE_FAN
                    : GLES20.GL_TRIANGLES);

            tess.callVertexOrVertexData( v[0].data);
            if (sign > 0) {
                for (vc = 1; vc < vn; ++vc) {
                    tess.callVertexOrVertexData( v[vc].data);
                }
            } else {
                for (vc = vn - 1; vc > 0; --vc) {
                    tess.callVertexOrVertexData( v[vc].data);
                }
            }
            tess.callEndOrEndData();
            return true;
        }
    }
}




Java Source Code List

.AccelerometerManager.java
.CompassManager.java
com.processing.core.PApplet.java
com.processing.core.PConstants.java
com.processing.core.PFont.java
com.processing.core.PGraphicsAndroid2D.java
com.processing.core.PGraphics.java
com.processing.core.PImage.java
com.processing.core.PMatrix2D.java
com.processing.core.PMatrix3D.java
com.processing.core.PMatrix.java
com.processing.core.PShapeOBJ.java
com.processing.core.PShapeSVG.java
com.processing.core.PShape.java
com.processing.core.PStyle.java
com.processing.core.PVector.java
com.processing.data.FloatDict.java
com.processing.data.FloatList.java
com.processing.data.IntDict.java
com.processing.data.IntList.java
com.processing.data.JSONArray.java
com.processing.data.JSONObject.java
com.processing.data.JSONTokener.java
com.processing.data.Sort.java
com.processing.data.StringDict.java
com.processing.data.StringList.java
com.processing.data.TableRow.java
com.processing.data.Table.java
com.processing.data.XML.java
com.processing.event.Event.java
com.processing.event.KeyEvent.java
com.processing.event.MouseEvent.java
com.processing.event.TouchEvent.java
com.processing.opengl.FontTexture.java
com.processing.opengl.FrameBuffer.java
com.processing.opengl.LinePath.java
com.processing.opengl.LineStroker.java
com.processing.opengl.PGLES.java
com.processing.opengl.PGL.java
com.processing.opengl.PGraphics2D.java
com.processing.opengl.PGraphics3D.java
com.processing.opengl.PGraphicsOpenGL.java
com.processing.opengl.PShader.java
com.processing.opengl.PShapeOpenGL.java
com.processing.opengl.Texture.java
com.processing.opengl.tess.ActiveRegion.java
com.processing.opengl.tess.CachedVertex.java
com.processing.opengl.tess.DictNode.java
com.processing.opengl.tess.Dict.java
com.processing.opengl.tess.GLUface.java
com.processing.opengl.tess.GLUhalfEdge.java
com.processing.opengl.tess.GLUmesh.java
com.processing.opengl.tess.GLUtessellatorImpl.java
com.processing.opengl.tess.GLUvertex.java
com.processing.opengl.tess.Geom.java
com.processing.opengl.tess.Mesh.java
com.processing.opengl.tess.Normal.java
com.processing.opengl.tess.PGLU.java
com.processing.opengl.tess.PGLUtessellatorCallbackAdapter.java
com.processing.opengl.tess.PGLUtessellatorCallback.java
com.processing.opengl.tess.PGLUtessellator.java
com.processing.opengl.tess.PriorityQHeap.java
com.processing.opengl.tess.PriorityQSort.java
com.processing.opengl.tess.PriorityQ.java
com.processing.opengl.tess.Render.java
com.processing.opengl.tess.Sweep.java
com.processing.opengl.tess.TessMono.java
com.processing.opengl.tess.TessState.java
processing.mode.android.AVD.java
processing.mode.android.AndroidBuild.java
processing.mode.android.AndroidEditor.java
processing.mode.android.AndroidMode.java
processing.mode.android.AndroidPreprocessor.java
processing.mode.android.AndroidRunner.java
processing.mode.android.AndroidSDK.java
processing.mode.android.AndroidToolbar.java
processing.mode.android.BadSDKException.java
processing.mode.android.Commander.java
processing.mode.android.DeviceListener.java
processing.mode.android.Device.java
processing.mode.android.Devices.java
processing.mode.android.EmulatorController.java
processing.mode.android.Export.java
processing.mode.android.Keys.java
processing.mode.android.LogEntry.java
processing.mode.android.Manifest.java
processing.mode.android.Permissions.java