Example usage for java.lang Double MIN_VALUE

List of usage examples for java.lang Double MIN_VALUE

Introduction

In this page you can find the example usage for java.lang Double MIN_VALUE.

Prototype

double MIN_VALUE

To view the source code for java.lang Double MIN_VALUE.

Click Source Link

Document

A constant holding the smallest positive nonzero value of type double , 2-1074.

Usage

From source file:org.thymeleaf.util.EvaluationUtilTest.java

@Test
public void convertToBooleanTest() {

    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(null));

    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Boolean.TRUE));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(Boolean.FALSE));

    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(BigDecimal.ZERO));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(BigDecimal.ONE));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(BigDecimal.TEN));

    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(BigInteger.ZERO));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(BigInteger.ONE));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(BigInteger.TEN));

    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(Double.valueOf(0.0d)));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(Float.valueOf(0.0f)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Double.valueOf(0.1d)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Float.valueOf(0.1f)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Double.valueOf(-0.1d)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Float.valueOf(-0.1f)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Double.valueOf(Double.MAX_VALUE)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Float.valueOf(Float.MAX_VALUE)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Double.valueOf(Double.MIN_VALUE)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Float.valueOf(Float.MIN_VALUE)));

    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(Character.valueOf((char) 0)));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Character.valueOf('x')));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Character.valueOf('0')));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(Character.valueOf('1')));

    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean("true"));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean("false"));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean("yes"));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean("no"));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean("on"));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean("off"));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean("sky"));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean("high above"));

    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(new LiteralValue("true")));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(new LiteralValue("false")));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(new LiteralValue("yes")));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(new LiteralValue("no")));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(new LiteralValue("on")));
    Assert.assertFalse(EvaluationUtil.evaluateAsBoolean(new LiteralValue("off")));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(new LiteralValue("sky")));
    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(new LiteralValue("high above")));

    Assert.assertTrue(EvaluationUtil.evaluateAsBoolean(EvaluationUtil.class));

}

From source file:cmsc105_mp2.Panels.java

public void createGraph(Data d, float window, Double threshold) {
    XYSeries data = new XYSeries("data");
    double max = Double.MIN_VALUE;
    for (double num : d.plots) {
        if (max < num)
            max = num;//from w  ww  . ja  v  a 2 s.c  om
    }
    max += 1;

    ArrayList<XYSeries> xy = new ArrayList();
    ArrayList<Integer> points = new ArrayList();

    for (int j = (int) (window / 2); j < d.plots.length - (window / 2); j++) {
        data.add(j, d.plots[j]);
        //System.out.println(points.size());
        if (d.plots[j] > threshold) {
            points.add(j);
        } else {
            if (points.size() >= window) {
                //System.out.println("MIN!");
                XYSeries series = new XYSeries("trend");
                for (int n : points) {
                    series.add(n, max);
                }
                xy.add(series);
            }
            points = new ArrayList();
        }
    }
    if (points.size() >= window) {
        XYSeries series = new XYSeries("trend");
        for (int n : points) {
            series.add(n, max);
        }
        xy.add(series);
    }
    XYSeriesCollection my_data_series = new XYSeriesCollection();
    my_data_series.addSeries(data);
    for (XYSeries x : xy) {
        my_data_series.addSeries(x);
    }

    XYSeries thresh = new XYSeries("threshold");
    for (int j = 0; j < d.plots.length; j++) {
        thresh.add(j, threshold);
    }
    my_data_series.addSeries(thresh);

    //System.out.println(d.name);
    JFreeChart XYLineChart = ChartFactory.createXYLineChart(d.name, "Position", "Average", my_data_series,
            PlotOrientation.VERTICAL, true, true, false);
    bImage1 = (BufferedImage) XYLineChart.createBufferedImage(690, 337);
    imageIcon = new ImageIcon(bImage1);
    jLabel1.setIcon(imageIcon);
    jLabel1.revalidate();
    jLabel1.repaint();
    jButton1.setText("Save as PNG");
    jButton1.repaint();
    jButton1.revalidate();
    jButton1.addActionListener(new ActionListener() {
        @Override
        public void actionPerformed(ActionEvent e) {
            JFileChooser chooser = new JFileChooser();
            chooser.setCurrentDirectory(new File("Documents"));
            int retrival = chooser.showSaveDialog(null);
            if (retrival == JFileChooser.APPROVE_OPTION) {
                try {
                    ImageIO.write(bImage1, "png", new File(chooser.getSelectedFile() + ".png"));
                } catch (IOException ex) {
                    System.out.println("Unable to Print!");
                }
            }
        }
    });
}

From source file:com.sillelien.dollar.api.types.DollarInfinity.java

@NotNull
@Override
public Number toNumber() {
    return positive ? Double.MAX_VALUE : Double.MIN_VALUE;
}

From source file:ubic.gemma.core.analysis.preprocess.OutlierDetectionServiceImpl.java

@Override
public Collection<OutlierDetails> identifyOutliersByMedianCorrelation(DoubleMatrix<BioAssay, BioAssay> cormat) {

    List<OutlierDetails> allSamples = new ArrayList<>();
    OutlierDetails sample;// w ww  . j a va  2 s  .c o m

    /* Find the 1st, 2nd, and 3rd quartiles of each sample */
    for (int i = 0; i < cormat.rows(); i++) {
        DoubleArrayList cors = new DoubleArrayList();
        sample = new OutlierDetails(cormat.getRowName(i));
        for (int j = 0; j < cormat.columns(); j++) {
            if (j != i) { // get all sample correlations except correlation with self
                double d = cormat.get(i, j);
                cors.add(d);
            }
        }
        assert (cors.size() == cormat.rows() - 1);

        sample.setFirstQuartile(this.findValueAtDesiredQuantile(cors, 25));
        sample.setMedianCorrelation(this.findValueAtDesiredQuantile(cors, 50));
        sample.setThirdQuartile(this.findValueAtDesiredQuantile(cors, 75));

        if (sample.getFirstQuartile() == Double.MIN_VALUE || sample.getMedianCorrelation() == Double.MIN_VALUE
                || sample.getThirdQuartile() == Double.MIN_VALUE) {
            throw new IllegalStateException("Could not determine one or more quartiles for a sample; ");
        }

        allSamples.add(sample);
    }

    /* Sort all samples by median correlation */
    Collections.sort(allSamples, OutlierDetails.MedianComparator);

    int numOutliers = 0;

    /* Check for overlap of first quartile and median of consecutive samples */
    for (int k = 0; k < allSamples.size() - 1; k++) {
        // if ( allSamples.get( k ).getMedianCorrelation() < allSamples.get( k + 1 ).getFirstQuartile() ) {
        if (allSamples.get(k).getThirdQuartile() < allSamples.get(k + 1).getFirstQuartile()) {
            numOutliers = k + 1;
        }
    }

    List<OutlierDetails> outliers = new ArrayList<>();

    for (int m = 0; m < numOutliers; m++) {
        outliers.add(allSamples.get(m));
    }

    /*
     * Check that all outliers are legitimate (controls for situations where sorting by median does not give 'true'
     * order)
     */
    if (numOutliers > 0) {
        OutlierDetectionServiceImpl.log
                .info("Removing false positives; number of outliers before test: " + numOutliers);
        outliers = this.removeFalsePositives(allSamples, outliers, numOutliers);

        numOutliers = outliers.size();
        OutlierDetectionServiceImpl.log
                .info("Number of outliers after removing false positives: " + numOutliers);
    }

    OutlierDetectionServiceImpl.log.info("Found " + numOutliers + " outlier(s)");

    return outliers;

}

From source file:fiji.plugin.trackmate.action.brownianmotion.WalkerMethodEstimator.java

/**
 * /*from   ww  w .ja va2 s.c  o  m*/
 * @param data Containes the mean squared displacement and the Tracklength for each track. data[i][0] = MSD data[i][1] = Tracklength
 * @param temp Temperature of the suspension in kelvin
 * @param visk Viscosity of the suspension
 * @param framerate Framerate in hertz
 * @param maxdiameter The maximum diameter for the estimation
 */
public WalkerMethodEstimator(double[][] data, double temp, double visk, double framerate, int maxdiameter) {

    this.data = data;
    this.temp = temp;
    this.visk = visk;
    this.frameduration = 1 / framerate;

    minTrackLength = Integer.MAX_VALUE;
    maxTrackLength = Integer.MIN_VALUE;
    //msdMin = Double.MAX_VALUE;
    msdMax = Double.MIN_VALUE;
    //double convFact = Math.pow(10, -10);

    for (int i = 0; i < data.length; i++) {
        //10^-10 cm^2 -> cm^2
        //this.data[i][0] = this.data[i][0]*convFact; //- 4*17.562862475*17.562862475*Math.pow(10, -7)*Math.pow(10, -7); 
        if (data[i][0] > msdMax) {
            msdMax = data[i][0];
        }
        if (this.data[i][1] > maxTrackLength) {
            maxTrackLength = (int) this.data[i][1];
        }
        if (this.data[i][1] < minTrackLength) {
            minTrackLength = (int) this.data[i][1];
        }
        //IJ.log("MSD " + this.data[i][0]);
    }

    logMapK = new double[maxTrackLength + 1];
    logMapGammaK = new double[maxTrackLength + 1];
    java.util.Arrays.fill(logMapK, Double.NaN);
    java.util.Arrays.fill(logMapGammaK, Double.NaN);
    maxRadiusInNm = maxdiameter / 2.0;

    binNumber = (int) (maxRadiusInNm / binSizeInnm);
    histBinNumber = (int) Math.ceil(Math.sqrt(data.length));
    deltaB = msdMax / histBinNumber;

    histogramMSD = new double[histBinNumber];
    java.util.Arrays.fill(histogramMSD, 0);
    Nk = new int[maxTrackLength + 1];
    java.util.Arrays.fill(Nk, 0);
    for (int i = 0; i < data.length; i++) {
        int index = (int) this.data[i][1];
        Nk[index]++;

        int index2 = (int) Math.floor(data[i][0] / deltaB - 0.001);

        histogramMSD[index2]++;
    }
}

From source file:Statistics.java

public static double maximum(double... vals) {
    double ret = Double.MIN_VALUE;
    for (double d : vals) {
        ret = Math.max(ret, d);/* w ww . j a v  a  2s .  c  o  m*/
    }
    return ret;
}

From source file:org.primefaces.component.imagecropper.ImageCropperRenderer.java

protected void encodeScript(FacesContext context, ImageCropper cropper) throws IOException {
    String widgetVar = cropper.resolveWidgetVar();
    String clientId = cropper.getClientId(context);
    String image = clientId + "_image";
    String select = null;/*from w ww  .java 2  s .c  om*/

    WidgetBuilder wb = getWidgetBuilder(context);
    wb.initWithComponentLoad("ImageCropper", widgetVar, clientId, clientId + "_image").attr("image", image);

    if (cropper.getMinSize() != null) {
        wb.append(",minSize:[").append(cropper.getMinSize()).append("]");
    }

    if (cropper.getMaxSize() != null) {
        wb.append(",maxSize:[").append(cropper.getMaxSize()).append("]");
    }

    wb.attr("bgColor", cropper.getBackgroundColor(), null)
            .attr("bgOpacity", cropper.getBackgroundOpacity(), 0.6)
            .attr("aspectRatio", cropper.getAspectRatio(), Double.MIN_VALUE)
            .attr("boxWidth", cropper.getBoxWidth(), 0).attr("boxHeight", cropper.getBoxHeight(), 0);

    Object value = cropper.getValue();
    if (value != null) {
        CroppedImage croppedImage = (CroppedImage) value;

        int x = croppedImage.getLeft();
        int y = croppedImage.getTop();
        int x2 = x + croppedImage.getWidth();
        int y2 = y + croppedImage.getHeight();

        select = "[" + x + "," + y + "," + x2 + "," + y2 + "]";
    } else if (cropper.getInitialCoords() != null) {
        select = "[" + cropper.getInitialCoords() + "]";
    }

    wb.append(",setSelect:").append(select);

    wb.finish();
}

From source file:de.biomedical_imaging.ij.nanotrackj.WalkerMethodEstimator.java

/**
 * /*  w w  w .  ja  va2 s .  co  m*/
 * @param data Containes the mean squared displacement and the Tracklength for each track. data[i][0] = MSD data[i][1] = Tracklength
 * @param temp Temperature of the suspension in kelvin
 * @param visk Viscosity of the suspension
 * @param framerate 
 * @param maxdiameter The maximum diameter for the estimation. 0 = Maximum Diameter is estimated automatically
 */
public WalkerMethodEstimator(double[][] data, double temp, double visk, double framerate, int maxdiameter) {
    this.temp = temp;
    this.visk = visk;
    this.framerate = 1.0 / framerate;
    this.data = data;
    kMin = Integer.MAX_VALUE;
    kMax = Integer.MIN_VALUE;
    msdMin = Double.MAX_VALUE;
    msdMax = Double.MIN_VALUE;
    double convFact = Math.pow(10, -10);

    for (int i = 0; i < data.length; i++) {
        //10^-10 cm^2 -> cm^2
        this.data[i][0] = this.data[i][0] * convFact; //- 4*17.562862475*17.562862475*Math.pow(10, -7)*Math.pow(10, -7); 
        if (this.data[i][0] > msdMax) {
            msdMax = this.data[i][0];
        }
        if (this.data[i][0] < msdMin) {
            msdMin = this.data[i][0];
        }

        if (this.data[i][1] > kMax) {
            kMax = (int) this.data[i][1];
        }
        if (this.data[i][1] < kMin) {
            kMin = (int) this.data[i][1];
        }
        //IJ.log("MSD " + this.data[i][0]);
    }

    logMapK = new double[kMax + 1];
    logMapGammaK = new double[kMax + 1];
    java.util.Arrays.fill(logMapK, Double.NaN);
    java.util.Arrays.fill(logMapGammaK, Double.NaN);
    maxRadiusInNm = maxdiameter / 2.0;
    if (maxdiameter == 0) {
        maxRadiusInNm = NanoTrackJ_.getInstance()
                .diffCoeffToDiameter((msdMin * Math.pow(10, 10)) / 4 * (framerate));
        maxRadiusInNm = (maxRadiusInNm + 1) / 2;
    }

    binNumber = (int) (maxRadiusInNm / binSizeInnm);
    histBinNumber = (int) Math.ceil(Math.sqrt(data.length));
    deltaB = msdMax / histBinNumber;

    histogramMSD = new double[histBinNumber];
    java.util.Arrays.fill(histogramMSD, 0);
    Nk = new int[kMax + 1];
    java.util.Arrays.fill(Nk, 0);
    for (int i = 0; i < data.length; i++) {
        int index = (int) this.data[i][1];
        Nk[index]++;

        int index2 = (int) Math.floor(data[i][0] / deltaB - 0.001);

        histogramMSD[index2]++;
    }
}

From source file:cc.mallet.types.PolyaUrnDirichlet.java

protected long nextPoisson(double meanPoisson) {
    final double pivot = 40.0d;
    if (meanPoisson < pivot) {
        double p = FastMath.exp(-meanPoisson);
        long n = 0;
        double r = 1.0d;
        double rnd = 1.0d;

        while (n < 1000 * meanPoisson) {
            rnd = ThreadLocalRandom.current().nextDouble();
            r *= rnd;//from  w w  w. j  av a2  s  .  com
            if (r >= p) {
                n++;
            } else {
                return n;
            }
        }
        return n;
    } else {
        final double lambda = FastMath.floor(meanPoisson);
        final double lambdaFractional = meanPoisson - lambda;
        final double logLambda = FastMath.log(lambda);
        final double logLambdaFactorial = CombinatoricsUtils.factorialLog((int) lambda);
        final long y2 = lambdaFractional < Double.MIN_VALUE ? 0 : nextPoisson(lambdaFractional);
        final double delta = FastMath.sqrt(lambda * FastMath.log(32 * lambda / FastMath.PI + 1));
        final double halfDelta = delta / 2;
        final double twolpd = 2 * lambda + delta;
        final double a1 = FastMath.sqrt(FastMath.PI * twolpd) * FastMath.exp(1 / (8 * lambda));
        final double a2 = (twolpd / delta) * FastMath.exp(-delta * (1 + delta) / twolpd);
        final double aSum = a1 + a2 + 1;
        final double p1 = a1 / aSum;
        final double p2 = a2 / aSum;
        final double c1 = 1 / (8 * lambda);

        double x = 0;
        double y = 0;
        double v = 0;
        int a = 0;
        double t = 0;
        double qr = 0;
        double qa = 0;
        for (;;) {
            final double u = ThreadLocalRandom.current().nextDouble();
            if (u <= p1) {
                final double n = ThreadLocalRandom.current().nextGaussian();
                x = n * FastMath.sqrt(lambda + halfDelta) - 0.5d;
                if (x > delta || x < -lambda) {
                    continue;
                }
                y = x < 0 ? FastMath.floor(x) : FastMath.ceil(x);
                final double e = nextStandardExponential();
                v = -e - (n * n / 2) + c1;
            } else {
                if (u > p1 + p2) {
                    y = lambda;
                    break;
                } else {
                    x = delta + (twolpd / delta) * nextStandardExponential();
                    y = FastMath.ceil(x);
                    v = -nextStandardExponential() - delta * (x + 1) / twolpd;
                }
            }
            a = x < 0 ? 1 : 0;
            t = y * (y + 1) / (2 * lambda);
            if (v < -t && a == 0) {
                y = lambda + y;
                break;
            }
            qr = t * ((2 * y + 1) / (6 * lambda) - 1);
            qa = qr - (t * t) / (3 * (lambda + a * (y + 1)));
            if (v < qa) {
                y = lambda + y;
                break;
            }
            if (v > qr) {
                continue;
            }
            if (v < y * logLambda - CombinatoricsUtils.factorialLog((int) (y + lambda)) + logLambdaFactorial) {
                y = lambda + y;
                break;
            }
        }
        return y2 + (long) y;
    }
}

From source file:springfox.bean.validators.plugins.MinMaxAnnotationPlugin.java

private AllowableValues createAllowableValuesFromMinMaxForNumbers(Optional<Min> min, Optional<Max> max) {
    AllowableRangeValues myvalues = null;

    if (min.isPresent() && max.isPresent()) {
        LOG.debug("@Min+@Max detected: adding AllowableRangeValues to field ");
        myvalues = new AllowableRangeValues(Double.toString(min.get().value()),
                Double.toString(max.get().value()));

    } else if (min.isPresent()) {
        LOG.debug("@Min detected: adding AllowableRangeValues to field ");
        // use Max value until "infinity" works
        myvalues = new AllowableRangeValues(Double.toString(min.get().value()),
                Double.toString(Double.MAX_VALUE));

    } else if (max.isPresent()) {
        // use Min value until "infinity" works
        LOG.debug("@Max detected: adding AllowableRangeValues to field ");
        myvalues = new AllowableRangeValues(Double.toString(Double.MIN_VALUE),
                Double.toString(max.get().value()));

    }/*ww w  .  ja  v  a  2  s . c om*/
    return myvalues;
}