Example usage for java.lang Double MIN_VALUE

List of usage examples for java.lang Double MIN_VALUE

Introduction

In this page you can find the example usage for java.lang Double MIN_VALUE.

Prototype

double MIN_VALUE

To view the source code for java.lang Double MIN_VALUE.

Click Source Link

Document

A constant holding the smallest positive nonzero value of type double , 2-1074.

Usage

From source file:reittienEtsinta.tiedostonKasittely.GeoJsonLukija.java

public GeoJsonLukija() {
    this.pisteita = 0;
    this.latmax = Double.MIN_VALUE;
    this.lonmax = Double.MIN_VALUE;
    this.latmin = Double.MAX_VALUE;
    this.lonmin = Double.MAX_VALUE;

}

From source file:com.cidre.algorithms.CidreMath.java

public static double[][] min(List<double[][]> stack) {
    double[][] minImage = stack.get(0);
    double[][] currentImage;
    double min = Double.MAX_VALUE;
    double max = Double.MIN_VALUE;
    for (int i = 1; i < stack.size(); i++) {
        currentImage = stack.get(i);/*  w w w .  j  av  a  2 s .c o m*/
        for (int x = 0; x < currentImage.length; x++) {
            for (int y = 0; y < currentImage[x].length; y++) {
                if (currentImage[x][y] < minImage[x][y]) {
                    minImage[x][y] = currentImage[x][y];
                    if (currentImage[x][y] < min) {
                        min = currentImage[x][y];
                    }
                    if (currentImage[x][y] > max) {
                        max = currentImage[x][y];
                    }
                } else {
                    if (minImage[x][y] < min) {
                        min = minImage[x][y];
                    }
                    if (minImage[x][y] > max) {
                        max = minImage[x][y];
                    }
                }
            }
        }
    }
    log.info("Min: {}, Max: {}", min, max);
    return minImage;
}

From source file:net.zypr.api.vo.GeoPositionVO.java

public GeoPositionVO(JSONObject jsonObject) {
    try {//  w  w  w . j a v  a 2 s. c  om
        setLatitude(Double.parseDouble(jsonObject.get("lat").toString()));
    } catch (Exception exception) {
        _latitude = Double.MIN_VALUE;
    }
    try {
        setLongitude(Double.parseDouble(jsonObject.get("lng").toString()));
    } catch (Exception exception) {
        _longitude = Double.MIN_VALUE;
    }
    try {
        setAltitude(Double.parseDouble(jsonObject.get("alt").toString()));
    } catch (Exception exception) {
        this._altitude = Double.MIN_VALUE;
    }
}

From source file:Main.java

/**
 * Returns the floating-point value adjacent to <code>d</code> in
 * the direction of negative infinity.  This method is
 * semantically equivalent to <code>nextAfter(d,
 * Double.NEGATIVE_INFINITY)</code>; however, a
 * <code>nextDown</code> implementation may run faster than its
 * equivalent <code>nextAfter</code> call.
 *
 * <p>Special Cases:/*from w ww.  j  av  a 2  s.  c  o m*/
 * <ul>
 * <li> If the argument is NaN, the result is NaN.
 *
 * <li> If the argument is negative infinity, the result is
 * negative infinity.
 *
 * <li> If the argument is zero, the result is
 * <code>-Double.MIN_VALUE</code>
 *
 * </ul>
 *
 * @param d  starting floating-point value
 * @return The adjacent floating-point value closer to negative
 * infinity.
 * @author Joseph D. Darcy
 */
public static double nextDown(double d) {
    if (isNaN(d) || d == Double.NEGATIVE_INFINITY)
        return d;
    else {
        if (d == 0.0)
            return -Double.MIN_VALUE;
        else
            return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + ((d > 0.0d) ? -1L : +1L));
    }
}

From source file:change_point_detection.CusumElement.java

public CusumElement() {
    this.preChangeDist = null;
    this.postChangeDist = null;
    this.preChangeMean = Double.MIN_VALUE;
    this.cusumScore = Double.MIN_VALUE;
}

From source file:sadl.scaling.Normalizer.java

@Override
public void setFeatureCount(int featureCount) {
    mins = new double[featureCount];
    maxs = new double[featureCount];
    for (int i = 0; i < featureCount; i++) {
        mins[i] = Double.MAX_VALUE;
        maxs[i] = Double.MIN_VALUE;
    }// w w  w . j  a v a2  s .  c om
}

From source file:lirmm.inria.fr.math.OpenLongToDoubleHashMapTest.java

@Before
public void setUp() throws Exception {
    javaMap.put(Long.valueOf(50), 100.0);
    javaMap.put(Long.valueOf(75), 75.0);
    javaMap.put(Long.valueOf(25), 500.0);
    javaMap.put(Long.MAX_VALUE, Double.MAX_VALUE);
    javaMap.put(Long.valueOf(0), -1.0);
    javaMap.put(Long.valueOf(1), 0.0);
    javaMap.put(Long.valueOf(33), -0.1);
    javaMap.put(Long.valueOf(23234234), -242343.0);
    javaMap.put(Long.valueOf(23321), Double.MIN_VALUE);
    javaMap.put(Long.valueOf(-4444), 332.0);
    javaMap.put(Long.valueOf(-1), -2323.0);
    javaMap.put(Long.MIN_VALUE, 44.0);
    javaMap.put(Long.valueOf("7263934625316938832"), 224.0);

    /* Add a few more to cause the table to rehash */
    javaMap.putAll(generate());/*from  w w w . ja va 2  s .c om*/

}

From source file:org.apache.lucene.spatial.base.shape.MultiShape.java

public MultiShape(Collection<Shape> geoms, SpatialContext ctx) {
    this.geoms = geoms;
    double minX = Double.MAX_VALUE;
    double minY = Double.MAX_VALUE;
    double maxX = Double.MIN_VALUE;
    double maxY = Double.MIN_VALUE;
    for (Shape geom : geoms) {
        Rectangle r = geom.getBoundingBox();
        minX = Math.min(minX, r.getMinX());
        minY = Math.min(minY, r.getMinY());
        maxX = Math.max(maxX, r.getMaxX());
        maxY = Math.max(maxY, r.getMaxY());
    }/*from   w  w  w. ja  v a2  s.  c  o  m*/
    this.bbox = ctx.makeRect(minX, maxX, minY, maxY);
}

From source file:comp.web.core.DataUtil.java

public List<Product> getProds(String cat, String prod, String from, String to) {
    logger.log(Level.FINER, "get prods with filter {0} {1} {2} {3}", new Object[] { cat, prod, from, to });

    if (StringUtils.isBlank(cat) && StringUtils.isBlank(prod) && StringUtils.isBlank(from)
            && StringUtils.isBlank(to)) {
        return Collections.emptyList();
    }/*from  w ww  . j  ava2s  .  co m*/

    String cat1 = StringUtils.stripToEmpty(cat) + "%";
    String prod1 = StringUtils.stripToEmpty(prod) + "%";
    double from1 = StringUtils.isNumeric(from) ? Double.parseDouble(from) : Double.MIN_VALUE;
    double to1 = StringUtils.isNumeric(to) ? Double.parseDouble(to) : Double.MAX_VALUE;

    EntityManager em = createEM();
    //        EntityTransaction tx = em.getTransaction();
    //        tx.begin();

    List<Product> products = em.createNamedQuery("priceList", Product.class).setParameter("cat", cat1)
            .setParameter("prod", prod1).setParameter("from", from1).setParameter("to", to1).getResultList();

    //        tx.commit();
    em.close();
    logger.log(Level.FINER, "get prods result size {0}", products.size());
    return products;
}

From source file:endrov.nucAutoJH.FitGaussian.java

private static double[] fitGaussian2D_(EvPixels p, double sigmaInit, final double midxInit,
        final double midyInit) {
    //sigma00, sigma01, sigma11, mu_x, mu_y, c 

    p = p.getReadOnly(EvPixelsType.DOUBLE);
    final double[] arrPixels = p.getArrayDouble();
    final int w = p.getWidth();
    final int h = p.getHeight();

    int extent = (int) Math.round(3 * sigmaInit);
    extent = Math.max(extent, 2);

    final int sx = Math.max(0, (int) (midxInit - extent));
    final int ex = Math.min(w, (int) (midxInit + extent + 1)); //+1 to the right?
    final int sy = Math.max(0, (int) (midyInit - extent));
    final int ey = Math.min(h, (int) (midyInit + extent + 1));

    double minIntensity = Double.MAX_VALUE;
    double maxIntensity = Double.MIN_VALUE;
    for (int y = sy; y < ey; y++) {
        int base = y * w;
        double dy2 = y - midyInit;
        dy2 = dy2 * dy2;//from  w w  w  . j a  v a  2  s .  com
        for (int x = sx; x < ex; x++) {
            double dx2 = x - midxInit;
            dx2 = dx2 * dx2;
            double t = arrPixels[base + x];
            //if(dx2+dy2<=extent*extent)
            {
                if (t < minIntensity)
                    minIntensity = t;
                if (t > maxIntensity)
                    maxIntensity = t;
            }
        }
    }

    //double[] weights=new double[]{1};
    double[] startPoint = new double[] { sigmaInit, 0, sigmaInit, midxInit, midyInit, minIntensity,
            maxIntensity - minIntensity };
    //double[] output=new double[startPoint.length];

    try {
        MultivariateRealFunction func = new MultivariateRealFunction() {
            //      opt.optimize(

            public double value(double[] arg) throws FunctionEvaluationException, IllegalArgumentException {
                double sigma00 = arg[0];
                double sigma01 = arg[1];
                double sigma11 = arg[2];
                double mu0 = arg[3];
                double mu1 = arg[4];
                double C = arg[5];
                double D = arg[6];

                double sumError = 0;

                Matrix2d sigma = new Matrix2d(sigma00, sigma01, sigma01, sigma11);
                Matrix2d sigmaInv = new Matrix2d();
                sigma.invert(sigmaInv);
                double sigmaDet = sigma.determinant();
                double front = 1.0 / (2 * Math.PI * Math.sqrt(sigmaDet));
                //System.out.println("front: "+front);
                //System.out.println("sigma inv "+sigmaInv);

                if (mu0 < sx || mu0 > ex)
                    sumError += 1000000;
                if (mu1 < sy || mu1 > ey)
                    sumError += 1000000;
                if (sigma00 < 1)
                    sumError += 1000000;
                //if(sigma01<0)               sumError+=1000000;
                if (sigma11 < 1)
                    sumError += 1000000;
                if (D <= 0)
                    sumError += 1000000;

                for (int y = sy; y < ey; y++) {
                    int base = y * w;
                    double dy2 = y - midyInit;
                    dy2 = dy2 * dy2;
                    for (int x = sx; x < ex; x++) {
                        double dx2 = x - midxInit;
                        dx2 = dx2 * dx2;
                        double thisReal = arrPixels[base + x];
                        //                  if(dx2+dy2<=extent*extent)
                        {
                            //               DoubleMatrix2D sigma=new DenseDoubleMatrix2D(new double[][]{{sigma00,sigma01},{sigma01,sigma11}});
                            //double sigmaDet=sigma00*sigma11-sigma01*sigma01;

                            double dx0 = x - mu0;
                            double dx1 = y - mu1;

                            //http://en.wikipedia.org/wiki/Multivariate_normal_distribution

                            Vector2d vX = new Vector2d(dx0, dx1);
                            Vector2d op = new Vector2d(vX);
                            sigmaInv.transform(op);
                            double upper = -0.5 * op.dot(vX);
                            double exp = Math.exp(upper);

                            //System.out.println("front "+front+" "+exp+" C "+C+" thisreal"+thisReal+" upper "+upper);

                            if (upper > -0.4)
                                exp = 1;
                            else
                                exp = Math.max(0, 1 + upper + 0.4);

                            /*
                            if(exp<0.7)
                               exp=0;
                            else
                               exp=1;
                            */

                            double thisExpected = D * front * exp + C;
                            double diff = thisExpected - thisReal;
                            sumError += diff * diff;

                        }
                    }
                }

                //System.out.println(sigma00+"\t"+sigma01+"\t"+sigma11+"\tC"+C+"\tmu "+mu0+","+mu1+"\terr "+sumError);
                return sumError;
                //            return new double[]{sumError};
            }

        };

        NelderMead opt = new NelderMead();
        //LevenbergMarquardtOptimizer opt=new LevenbergMarquardtOptimizer();
        opt.setMaxIterations(10000);
        RealPointValuePair pair = opt.optimize(func, GoalType.MINIMIZE, startPoint);

        int numit = opt.getIterations();
        System.out.println("#it " + numit);
        System.out.println("err " + func.value(pair.getPointRef()));
        return pair.getPointRef();

        //         for(int i=0;i<startPoint.length;i++)
        //         System.out.println("i: "+i+"  "+output[i]);
        //, output, weights, startPoint);
    }
    /*
    catch (MaxIterationsExceededException e)
       {
       System.out.println("max it reached");
               
       }*/
    catch (Exception e) {
        e.printStackTrace();
    }

    //Maybe this is a bad point?
    System.out.println("max it reached");
    return startPoint;
    //      return output;
}