List of usage examples for java.lang Double MIN_VALUE
double MIN_VALUE
To view the source code for java.lang Double MIN_VALUE.
Click Source Link
From source file:carskit.alg.cars.transformation.prefiltering.splitting.ItemSplitting.java
public Table<Integer, Integer, Integer> split(SparseMatrix sm, int min) { Table<Integer, Integer, Integer> datatable = HashBasedTable.create(); for (Integer j : itemRatingList.keySet()) { Collection<Integer> uis = itemRatingList.get(j); double maxt = Double.MIN_VALUE; int splitcond = -1; for (Integer cond : condContextsList.keySet()) { Collection<Integer> ctx = condContextsList.get(cond); // start to extract two rating list HashMultiset<Double> rate1 = HashMultiset.create(); HashMultiset<Double> rate2 = HashMultiset.create(); for (Integer ui : uis) { List<Integer> uctx = sm.getColumns(ui); for (Integer c : uctx) { double rate = sm.get(ui, c); if (ctx.contains(c)) rate1.add(rate); else rate2.add(rate); }/*w w w .j a v a 2 s.c o m*/ } double[] drate1 = Doubles.toArray(rate1); double[] drate2 = Doubles.toArray(rate2); if (drate1.length >= min && drate2.length >= min) { TTest tt = new TTest(); double p = tt.tTest(drate1, drate2); if (p < 0.05) { double t = tt.t(drate1, drate2); if (t > maxt) { // update the split splitcond = cond; maxt = t; } } } } if (splitcond != -1) { // put u, ctx, new uid into datatable int newid = startId++; Collection<Integer> ctx = condContextsList.get(splitcond); for (Integer c : ctx) datatable.put(j, c, newid); } } Logs.info(datatable.rowKeySet().size() + " items have been splitted."); return datatable; }
From source file:net.zypr.api.vo.GeoPositionVO.java
public GeoPositionVO(double[] coordinates) { this(coordinates[0], coordinates[1], (coordinates.length == 3 ? coordinates[2] : Double.MIN_VALUE)); }
From source file:carskit.alg.cars.transformation.prefiltering.splitting.UserSplitting.java
public Table<Integer, Integer, Integer> split(SparseMatrix sm, int min) { Logs.debug("UserSplitting: startId = " + startId); Table<Integer, Integer, Integer> datatable = HashBasedTable.create(); for (Integer u : userRatingList.keySet()) { Collection<Integer> uis = userRatingList.get(u); double maxt = Double.MIN_VALUE; int splitcond = -1; for (Integer cond : condContextsList.keySet()) { Collection<Integer> ctx = condContextsList.get(cond); // start to extract two rating list HashMultiset<Double> rate1 = HashMultiset.create(); HashMultiset<Double> rate2 = HashMultiset.create(); for (Integer ui : uis) { List<Integer> uctx = sm.getColumns(ui); for (Integer c : uctx) { double rate = sm.get(ui, c); if (ctx.contains(c)) rate1.add(rate); else rate2.add(rate); }// www .j a v a2 s.c o m } double[] drate1 = Doubles.toArray(rate1); double[] drate2 = Doubles.toArray(rate2); if (drate1.length >= min && drate2.length >= min) { TTest tt = new TTest(); double p = tt.tTest(drate1, drate2); if (p < 0.05) { double t = tt.t(drate1, drate2); if (t > maxt) { // update the split splitcond = cond; maxt = t; } } } } if (splitcond != -1) { // put u, ctx, new uid into datatable int newid = startId++; Collection<Integer> ctx = condContextsList.get(splitcond); for (Integer c : ctx) datatable.put(u, c, newid); } } Logs.info(datatable.rowKeySet().size() + " users have been splitted."); return datatable; }
From source file:org.matsim.contrib.util.random.WeightedRandomSelectionTest.java
@Test public void testIncorrectInput() { assertIncorrectWeight(-Double.MIN_VALUE); assertIncorrectWeight(-1);//from w w w .j ava2 s. c o m assertIncorrectWeight(-Double.MAX_VALUE); assertIncorrectWeight(Double.NEGATIVE_INFINITY); assertIncorrectWeight(Double.POSITIVE_INFINITY); assertIncorrectWeight(Double.NaN); weightedRandomSelection.add("A", 0); weightedRandomSelection.add("B", Double.MAX_VALUE); assertThatThrownBy(() -> weightedRandomSelection.add(null, Double.MAX_VALUE))// .isExactlyInstanceOf(ArithmeticException.class)// .hasMessage("Total weight is infinite"); }
From source file:com.sixrr.metrics.ui.charts.DiffHistogramDialog.java
private static boolean isDataIntegral(Double[] datapoints, Double[] prevDatapoints) { final double[] strippedData = GraphUtils.stripNulls(datapoints); final double[] strippedPrevData = GraphUtils.stripNulls(prevDatapoints); boolean isIntegral = true; double maximum = Double.MIN_VALUE; for (double aStrippedData : strippedData) { if (!isIntegral(aStrippedData)) { isIntegral = false;/*from w w w .j a v a 2 s . c o m*/ } maximum = Math.max(maximum, aStrippedData); } for (double aStrippedPrevData : strippedPrevData) { if (!isIntegral(aStrippedPrevData)) { isIntegral = false; } maximum = Math.max(maximum, aStrippedPrevData); } return isIntegral && maximum < 2 * DEFAULT_BIN_COUNT; }
From source file:com.devoteam.srit.xmlloader.core.report.derived.StatFlow.java
public StatFlow(long timestamp, long zeroTimestamp, StatKey id, StatCounter counter, CounterReportTemplate template) throws ParsingException { super(timestamp, zeroTimestamp, counter); super.id = id; super.template = template; this.counter.graphDataset .divide((double) this.counter.graphDataset.graphParameters.graphPeriod / (double) 1000); this.min = Double.MAX_VALUE; this.max = Double.MIN_VALUE; double[] array = this.counter.graphDataset.getGraphArray(); for (int i = 0; i < array.length; i++) { double value = array[i]; if (value < this.min) { this.min = value; }//from w w w .j a va 2s . c om if (value > this.max) { this.max = value; } } init(); }
From source file:co.turnus.common.util.CommonDataUtil.java
public static <T> double maxOf(Map<T, StatisticalData> map) { double val = Double.MIN_VALUE; for (Entry<T, StatisticalData> s : map.entrySet()) { val = FastMath.max(val, s.getValue().getMin()); }//from w ww . java 2 s. c om return val; }
From source file:com.basetechnology.s0.agentserver.field.FloatField.java
public static Field fromJson(SymbolTable symbolTable, JSONObject fieldJson) { String type = fieldJson.optString("type"); if (type == null || !type.equals("float")) return null; String name = fieldJson.has("name") ? fieldJson.optString("name") : null; String label = fieldJson.has("label") ? fieldJson.optString("label") : null; String description = fieldJson.has("description") ? fieldJson.optString("description") : null; double defaultValue = fieldJson.has("default_value") ? fieldJson.optDouble("default_value") : 0; double minValue = fieldJson.has("min_value") ? fieldJson.optDouble("min_value") : Double.MIN_VALUE; double maxValue = fieldJson.has("max_value") ? fieldJson.optDouble("max_value") : Double.MAX_VALUE; int nominalWidth = fieldJson.has("nominal_width") ? fieldJson.optInt("nominal_width") : 0; String compute = fieldJson.has("compute") ? fieldJson.optString("compute") : null; return new FloatField(symbolTable, name, label, description, defaultValue, minValue, maxValue, nominalWidth, compute);//from w w w . j av a2s. com }
From source file:sadl.integration.MonteCarloIntegration.java
public void preprocess(ContinuousDistribution d, double stepSize, double xMin, double xMax) { if (d instanceof SingleValueDistribution) { singleValueDis = true;/*from w ww .j ava 2 s .c o m*/ preprocessed = true; return; } if (Double.isInfinite(xMin)) { xMin = Double.MIN_VALUE; } if (Double.isInfinite(xMax)) { xMax = Double.MAX_VALUE; } final Pair<Double, Double> minMax = findExtreme(d, xMin, xMax, stepSize); final double yMin = minMax.getLeft().doubleValue(); final double yMax = minMax.getRight().doubleValue(); final double xDiff = xMax - xMin; final double yDiff = yMax - yMin; int pointsFound = 0; int pointsRejected = 0; integral = new MonteCarloPoint[pointsToStore]; while (pointsFound < pointsToStore) { final double xSampled = xMin + (xDiff * xRandom.nextDouble()); final double ySampled = yMin + (yDiff * yRandom.nextDouble()); final double pdfValue = d.pdf(xSampled); if (pdfValue > 0 && ySampled <= pdfValue) { // store the point because the sampled y value is smaller than the pdf value at the x value integral[pointsFound] = new MonteCarloPoint(xSampled, pdfValue); pointsFound++; } else { pointsRejected++; } } logger.debug("Rejected {} points", pointsRejected); logger.debug("Accepted {} points", pointsFound); if (Settings.isParallel()) { Arrays.parallelSort(integral, new MonteCarloPointComparator()); } else { Arrays.sort(integral, new MonteCarloPointComparator()); } // Collections.sort(integral2); // integral2.sort((m1, m2) -> Double.compare(m1.getX(), m2.getX())); preprocessed = true; }
From source file:eu.crisis_economics.abm.algorithms.statistics.TestFloorInterpolator.java
/** * Test whether an instance of {@link FloorInterpolator} interpolates * a simple discrete input series as expected. This unit test operates * as follows:<br><br>/*from w ww .ja v a 2s . co m*/ * * {@code (a)} * A short discrete subsequence of the function {@code f(T) = T**2} * is generated;<br> * {@code (b)} * An instance of {@link FloorInterpolator} is used to create a * {@link UnivariateFunction}, {@code U}, from this sequence;<br> * {@code (c)} * {@code U} is sampled repeatedly for a number of points in the domain * of the input sequence. The results of this operation are compared * to correct, expected outputs. */ @Test public void testFloorInterpolatorOutput() { final double[] x = new double[] { 2., 3., 4., 5., 6., }, y = new double[] { 4., 9., 16., 25., 36., }; final double[] expectedResults = { -Double.MAX_VALUE, 4.000000000, Double.MIN_VALUE, 4.000000000, 1.000000000, 4.000000000, 1.111111111, 4.000000000, 1.222222222, 4.000000000, 1.333333333, 4.000000000, 1.444444444, 4.000000000, 1.555555556, 4.000000000, 1.666666667, 4.000000000, 1.777777778, 4.000000000, 1.888888889, 4.000000000, 2.000000000, 4.000000000, 2.111111111, 4.000000000, 2.222222222, 4.000000000, 2.333333333, 4.000000000, 2.444444444, 4.000000000, 2.555555556, 4.000000000, 2.666666667, 4.000000000, 2.777777778, 4.000000000, 2.888888889, 4.000000000, 3.000000000, 9.000000000, 3.111111111, 9.000000000, 3.222222222, 9.000000000, 3.333333333, 9.000000000, 3.444444444, 9.000000000, 3.555555556, 9.000000000, 3.666666667, 9.000000000, 3.777777778, 9.000000000, 3.888888889, 9.000000000, 4.000000000, 16.00000000, 4.111111111, 16.00000000, 4.222222222, 16.00000000, 4.333333333, 16.00000000, 4.444444444, 16.00000000, 4.555555556, 16.00000000, 4.666666667, 16.00000000, 4.777777778, 16.00000000, 4.888888889, 16.00000000, 5.000000000, 25.00000000, 5.111111111, 25.00000000, 5.222222222, 25.00000000, 5.333333333, 25.00000000, 5.444444444, 25.00000000, 5.555555556, 25.00000000, 5.666666667, 25.00000000, 5.777777778, 25.00000000, 5.888888889, 25.00000000, 6.000000000, 36.00000000, 6.111111111, 36.00000000, 6.222222222, 36.00000000, 6.333333333, 36.00000000, 6.444444444, 36.00000000, 6.555555556, 36.00000000, 6.666666667, 36.00000000, 6.777777778, 36.00000000, 6.888888889, 36.00000000, 7.000000000, 36.00000000, 7.111111111, 36.00000000, 7.222222222, 36.00000000, 7.333333333, 36.00000000, 7.444444444, 36.00000000, 7.555555556, 36.00000000, 7.666666667, 36.00000000, 7.777777778, 36.00000000, 7.888888889, 36.00000000, 8.000000000, 36.00000000, 8.111111111, 36.00000000, 8.222222222, 36.00000000, 8.333333333, 36.00000000, 8.444444444, 36.00000000, 8.555555556, 36.00000000, 8.666666667, 36.00000000, 8.777777778, 36.00000000, 8.888888889, 36.00000000, 9.000000000, 36.00000000, 9.111111111, 36.00000000, 9.222222222, 36.00000000, 9.333333333, 36.00000000, 9.444444444, 36.00000000, 9.555555556, 36.00000000, 9.666666667, 36.00000000, 9.777777778, 36.00000000, 9.888888889, 36.00000000, 10.00000000, 36.00000000, 10.11111111, 36.00000000, 10.22222222, 36.00000000, 10.33333333, 36.00000000, 10.44444444, 36.00000000, 10.55555556, 36.00000000, 10.66666667, 36.00000000, 10.77777778, 36.00000000, 10.88888889, 36.00000000, 11.00000000, 36.00000000, 11.11111111, 36.00000000, 11.22222222, 36.00000000, 11.33333333, 36.00000000, 11.44444444, 36.00000000, 11.55555556, 36.00000000, 11.66666667, 36.00000000, 11.77777778, 36.00000000, 11.88888889, 36.00000000, 12.00000000, 36.00000000, Double.MAX_VALUE, 36.00000000 }; final UnivariateInterpolator interpolator = new FloorInterpolator(); final UnivariateFunction f = interpolator.interpolate(x, y); for (int i = 0; i < expectedResults.length; i += 2) { final double t = expectedResults[i], f_t_Observed = f.value(t), f_t_Expected = expectedResults[i + 1]; System.out.printf("t: %16.10g observed: %16.10g expected: %16.10g\n", t, f_t_Observed, f_t_Expected); Assert.assertEquals(f_t_Observed, f_t_Expected, 1.e-12); } }