List of usage examples for java.lang Double MIN_VALUE
double MIN_VALUE
To view the source code for java.lang Double MIN_VALUE.
Click Source Link
From source file:org.chombo.util.Utility.java
/** * @param config//from ww w . ja v a 2s .c o m * @param param * @param msg * @return */ public static double assertDoubleConfigParam(Configuration config, String param, String msg) { double value = Double.MIN_VALUE; String stParamValue = assertStringConfigParam(config, param, msg); value = Double.parseDouble(stParamValue); return value; }
From source file:org.esa.nest.gpf.filtering.SpeckleFilterOp.java
/** * Get the Frost filtered pixel intensity for pixels in a given rectangular region. * * @param neighborValues Array holding the pixel values. * @param numSamples The number of samples. * @param noDataValue Place holder for no data value. * @param mask Array holding Frost filter mask values. * @return val The Frost filtered value. * @throws org.esa.beam.framework.gpf.OperatorException If an error occurs in computation of the Frost filtered value. *///from w ww . j a v a2 s .com private double getFrostValue(final double[] neighborValues, final int numSamples, final double noDataValue, final double[] mask) { final double mean = getMeanValue(neighborValues, numSamples, noDataValue); if (mean <= Double.MIN_VALUE) { return mean; } final double var = getVarianceValue(neighborValues, numSamples, mean, noDataValue); if (var <= Double.MIN_VALUE) { return mean; } final double k = dampingFactor * var / (mean * mean); double sum = 0.0; double totalWeight = 0.0; for (int i = 0; i < neighborValues.length; i++) { if (neighborValues[i] != noDataValue) { final double weight = FastMath.exp(-k * mask[i]); sum += weight * neighborValues[i]; totalWeight += weight; } } return sum / totalWeight; }
From source file:com.apptentive.android.sdk.module.messagecenter.view.MessageCenterActivityContent.java
private boolean addExpectationStatusIfNeeded() { ApptentiveMessage apptentiveMessage = null; MessageCenterListItem message = messages.get(messages.size() - 1); if (message != null && message instanceof ApptentiveMessage) { apptentiveMessage = (ApptentiveMessage) message; }//from w w w . j a v a 2 s . c om // Check if the last message in the view is a sent message if (apptentiveMessage != null && (apptentiveMessage.isOutgoingMessage())) { Double createdTime = apptentiveMessage.getCreatedAt(); if (createdTime != null && createdTime > Double.MIN_VALUE) { MessageCenterStatus newItem = interaction.getRegularStatus(); if (newItem != null && whoCardItem == null && composingItem == null) { // Add expectation status message if the last is a sent clearStatus(); statusItem = newItem; messages.add(newItem); return true; } } } return false; }
From source file:org.colombbus.tangara.Configuration.java
/** * Gets the value of a property in a long format * * @param property/*from w w w . j ava2 s . c o m*/ * name of the property * @return the value of the property, or {@link Double#MIN_VALUE} if the * property is not found. */ public double getDouble(String property) { return getDouble(property, Double.MIN_VALUE); }
From source file:net.sf.json.TestJSONObject.java
public void testFromObject_use_wrappers() { JSONObject json = JSONObject.fromObject(Boolean.TRUE); assertTrue(json.isEmpty());//w ww . j a va2s.c o m json = JSONObject.fromObject(new Byte(Byte.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Short(Short.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Integer(Integer.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Long(Long.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Float(Float.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Double(Double.MIN_VALUE)); assertTrue(json.isEmpty()); json = JSONObject.fromObject(new Character('A')); assertTrue(json.isEmpty()); }
From source file:org.esa.nest.gpf.filtering.SpeckleFilterOp.java
/** * Get the Gamma filtered pixel intensity for pixels in a given rectangular region. * * @param neighborValues Array holding the pixel values. * @param numSamples The number of samples. * @param noDataValue Place holder for no data value. * @return val The Gamma filtered value. * @throws org.esa.beam.framework.gpf.OperatorException If an error occurs in computation of the Gamma filtered value. *//*from w w w. j a va 2 s . c o m*/ private double getGammaMapValue(final double[] neighborValues, final int numSamples, final double noDataValue, final double cu, final double cu2, final double enl) { final double mean = getMeanValue(neighborValues, numSamples, noDataValue); if (mean <= Double.MIN_VALUE) { return mean; } final double var = getVarianceValue(neighborValues, numSamples, mean, noDataValue); if (var <= Double.MIN_VALUE) { return mean; } final double ci = Math.sqrt(var) / mean; if (ci <= cu) { return mean; } final double cp = neighborValues[neighborValues.length / 2]; if (cu < ci) { final double cmax = Math.sqrt(2) * cu; if (ci < cmax) { final double alpha = (1 + cu2) / (ci * ci - cu2); final double b = alpha - enl - 1; final double d = mean * mean * b * b + 4 * alpha * enl * mean * cp; return (b * mean + Math.sqrt(d)) / (2 * alpha); } } return cp; }
From source file:net.tourbook.photo.ImageGallery.java
/** * column: image direction degree/* w w w. j av a 2 s . com*/ */ private void defineColumn_ImageDirectionDegree() { final ColumnDefinition colDef = TableColumnFactory.PHOTO_FILE_IMAGE_DIRECTION_DEGREE// .createColumn(_columnManager, _pc); colDef.setIsDefaultColumn(); colDef.setLabelProvider(new CellLabelProvider() { @Override public void update(final ViewerCell cell) { final Photo photo = (Photo) cell.getElement(); final double imageDirection = photo.getImageDirection(); if (imageDirection == Double.MIN_VALUE) { cell.setText(UI.EMPTY_STRING); } else { cell.setText(Integer.toString((int) imageDirection)); } } }); }
From source file:org.openmrs.module.appointmentscheduling.api.impl.AppointmentServiceImpl.java
private double[] confidenceInterval(Double[] data) { //Empty Dataset if (data.length == 0) return new double[] { 0.0, 0.0 }; //Initialization double mean = 0; int count = data.length; int df = count - 1; //If Dataset consists of only one item if (df == 0)//from w w w . j av a 2 s .c o m return new double[] { Double.MIN_VALUE, Double.MAX_VALUE }; double alpha = 0.05; double tStat = StudentT.tTable(df, alpha); //Compute Mean for (double val : data) mean += val; mean = mean / count; //Compute Variance double variance = 0; for (double val : data) variance += Math.pow((val - mean), 2); variance = variance / df; //If deviation is small - Suspected as "Clean of Noise" if (Math.sqrt(variance) <= 1) return new double[] { Double.MIN_VALUE, Double.MAX_VALUE }; //Compute Confidence Interval Bounds. double[] boundaries = new double[2]; double factor = tStat * (Math.sqrt(variance) / Math.sqrt(count)); boundaries[0] = mean - factor; boundaries[1] = mean + factor; return boundaries; }
From source file:org.esa.nest.gpf.filtering.SpeckleFilterOp.java
/** * Get the Lee filtered pixel intensity for pixels in a given rectangular region. * * @param neighborValues Array holding the pixel values. * @param numSamples The number of samples. * @param noDataValue Place holder for no data value. * @return val The Lee filtered value.//from www . j a v a 2s .c o m * @throws org.esa.beam.framework.gpf.OperatorException If an error occurs in computation of the Lee filtered value. */ private double getLeeValue(final double[] neighborValues, final int numSamples, final double noDataValue, final double cu, final double cu2) { final double mean = getMeanValue(neighborValues, numSamples, noDataValue); if (Double.compare(mean, Double.MIN_VALUE) <= 0) { return mean; } final double var = getVarianceValue(neighborValues, numSamples, mean, noDataValue); if (Double.compare(var, Double.MIN_VALUE) <= 0) { return mean; } final double ci = Math.sqrt(var) / mean; if (ci < cu) { return mean; } final double cp = neighborValues[neighborValues.length / 2]; final double w = 1 - cu2 / (ci * ci); return cp * w + mean * (1 - w); }
From source file:main.ScorePipeline.java
/** * This method calculates similarities bin-based between yeast_human spectra * on the first data set against all yeast spectra on the second data set * * @param min_mz// ww w . ja v a 2s . c om * @param max_mz * @param topN * @param percentage * @param yeast_and_human_file * @param is_precursor_peak_removal * @param fragment_tolerance * @param noiseFiltering * @param transformation * @param intensities_sum_or_mean_or_median * @param yeast_spectra * @param bw * @param charge * @param charge_situation * @throws IllegalArgumentException * @throws ClassNotFoundException * @throws IOException * @throws MzMLUnmarshallerException * @throws NumberFormatException * @throws ExecutionException * @throws InterruptedException */ private static void calculate_BinBasedScoresObsolete_AllTogether(ArrayList<BinMSnSpectrum> yeast_spectra, ArrayList<BinMSnSpectrum> yeast_human_spectra, BufferedWriter bw, int charge, double precursorTol, double fragTol) throws IllegalArgumentException, ClassNotFoundException, IOException, MzMLUnmarshallerException, NumberFormatException, InterruptedException { ExecutorService excService = Executors .newFixedThreadPool(ConfigHolder.getInstance().getInt("thread.numbers")); List<Future<SimilarityResult>> futureList = new ArrayList<>(); for (BinMSnSpectrum binYeastHumanSp : yeast_human_spectra) { int tmpMSCharge = binYeastHumanSp.getSpectrum().getPrecursor().getPossibleCharges().get(0).value; if (charge == 0 || tmpMSCharge == charge) { if (!binYeastHumanSp.getSpectrum().getPeakList().isEmpty() && !yeast_spectra.isEmpty()) { Calculate_Similarity similarity = new Calculate_Similarity(binYeastHumanSp, yeast_spectra, fragTol, precursorTol); Future future = excService.submit(similarity); futureList.add(future); } } } for (Future<SimilarityResult> future : futureList) { try { SimilarityResult get = future.get(); String tmp_charge = get.getSpectrumChargeAsString(), spectrum = get.getSpectrumName(); double tmpPrecMZ = get.getSpectrumPrecursorMZ(); double dot_product = get.getScores().get(SimilarityMethods.NORMALIZED_DOT_PRODUCT_STANDARD), dot_product_skolow = get.getScores().get(SimilarityMethods.NORMALIZED_DOT_PRODUCT_SOKOLOW), pearson = get.getScores().get(SimilarityMethods.PEARSONS_CORRELATION), spearman = get.getScores().get(SimilarityMethods.SPEARMANS_CORRELATION); if (dot_product == Double.MIN_VALUE) { LOGGER.info("The similarity for the spectrum " + spectrum + " is too small to keep the record, therefore score is not computed."); // Means that score has not been calculated! // bw.write(tmp_Name + "\t" + tmp_charge + "\t" + tmpPrecMZ + "\t"); // bw.write("NA" + "\t" + "NA" + "\t" + "NA" + "\t" + "NA"); } else { bw.write(spectrum + "\t" + tmp_charge + "\t" + tmpPrecMZ + "\t" + get.getSpectrumToCompare() + "\t"); bw.write(dot_product + "\t" + dot_product_skolow + "\t" + pearson + "\t" + spearman + "\n"); } } catch (InterruptedException | ExecutionException e) { LOGGER.error(e); } } }