Java tutorial
// //CLASS //ExSound - illustrate the use of sounds // //LESSON //Add a PointSound and a BackgroundSound to an environment. // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // import java.applet.Applet; import java.awt.AWTEvent; import java.awt.BorderLayout; import java.awt.CheckboxMenuItem; import java.awt.Component; import java.awt.Cursor; import java.awt.Frame; import java.awt.Menu; import java.awt.MenuBar; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.InputEvent; import java.awt.event.ItemEvent; import java.awt.event.ItemListener; import java.awt.event.MouseEvent; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import java.io.File; import java.util.Enumeration; import java.util.EventListener; import javax.media.j3d.Alpha; import javax.media.j3d.AmbientLight; import javax.media.j3d.Appearance; import javax.media.j3d.BackgroundSound; import javax.media.j3d.Behavior; import javax.media.j3d.BoundingSphere; import javax.media.j3d.BranchGroup; import javax.media.j3d.Canvas3D; import javax.media.j3d.DirectionalLight; import javax.media.j3d.GeometryArray; import javax.media.j3d.Group; import javax.media.j3d.ImageComponent; import javax.media.j3d.IndexedQuadArray; import javax.media.j3d.IndexedTriangleStripArray; import javax.media.j3d.Light; import javax.media.j3d.Material; import javax.media.j3d.MediaContainer; import javax.media.j3d.PointLight; import javax.media.j3d.PointSound; import javax.media.j3d.RotationInterpolator; import javax.media.j3d.Shape3D; import javax.media.j3d.Sound; import javax.media.j3d.Texture; import javax.media.j3d.TextureAttributes; import javax.media.j3d.Transform3D; import javax.media.j3d.TransformGroup; import javax.media.j3d.WakeupCriterion; import javax.media.j3d.WakeupOnAWTEvent; import javax.media.j3d.WakeupOnElapsedFrames; import javax.media.j3d.WakeupOr; import javax.vecmath.Color3f; import javax.vecmath.Matrix4d; import javax.vecmath.Point2f; import javax.vecmath.Point3d; import javax.vecmath.Point3f; import javax.vecmath.Vector3d; import javax.vecmath.Vector3f; import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.image.TextureLoader; import com.sun.j3d.utils.universe.PlatformGeometry; import com.sun.j3d.utils.universe.SimpleUniverse; import com.sun.j3d.utils.universe.Viewer; import com.sun.j3d.utils.universe.ViewingPlatform; public class ExSound extends Java3DFrame { //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- // // Nodes (updated via menu) // private BackgroundSound backgroundSound = null; private PointSound pointSound = null; private float soundHeight = 1.6f; private float pointX = 0.0f; private AmbientLight ambientLight = null; private PointLight pointLight = null; // // Build scene // public Group buildScene() { // Get the initial sound volume float vol = ((Float) volumes[currentVolume].value).floatValue(); // Turn off the example headlight setHeadlightEnable(false); // Default to walk navigation setNavigationType(Walk); // Build the scene group Group scene = new Group(); // // Preload the sounds // if (debug) System.err.println(" sounds..."); String path = getCurrentDirectory(); MediaContainer backgroundMedia = new MediaContainer(path + "canon.wav"); backgroundMedia.setCacheEnable(true); MediaContainer pointMedia = new MediaContainer(path + "willow1.wav"); pointMedia.setCacheEnable(true); // BEGIN EXAMPLE TOPIC // Create influencing bounds BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Background sound backgroundSound = new BackgroundSound(); backgroundSound.setEnable(backgroundSoundOnOff); backgroundSound.setLoop(Sound.INFINITE_LOOPS); backgroundSound.setSoundData(backgroundMedia); backgroundSound.setInitialGain(vol); backgroundSound.setSchedulingBounds(worldBounds); backgroundSound.setCapability(Sound.ALLOW_ENABLE_WRITE); backgroundSound.setCapability(Sound.ALLOW_INITIAL_GAIN_WRITE); scene.addChild(backgroundSound); // Create a distance gain array for the point sound Point2f[] distanceGain = { new Point2f(9.0f, 1.0f), // Full volume new Point2f(10.0f, 0.5f), // Half volume new Point2f(20.0f, 0.25f), // Quarter volume new Point2f(30.0f, 0.0f), // Zero volume }; // Point sound pointSound = new PointSound(); pointSound.setEnable(pointSoundOnOff); pointSound.setPosition(new Point3f(pointX, soundHeight, 0.0f)); pointSound.setLoop(Sound.INFINITE_LOOPS); pointSound.setSoundData(pointMedia); pointSound.setInitialGain(vol); pointSound.setDistanceGain(distanceGain); pointSound.setSchedulingBounds(worldBounds); pointSound.setCapability(Sound.ALLOW_ENABLE_WRITE); pointSound.setCapability(Sound.ALLOW_INITIAL_GAIN_WRITE); scene.addChild(pointSound); // END EXAMPLE TOPIC // Build a few lights, one per sound. We'll turn them // on when the associated sound is on. ambientLight = new AmbientLight(); ambientLight.setEnable(backgroundSoundOnOff); ambientLight.setColor(Gray); ambientLight.setInfluencingBounds(worldBounds); ambientLight.setCapability(Light.ALLOW_STATE_WRITE); scene.addChild(ambientLight); pointLight = new PointLight(); pointLight.setEnable(pointSoundOnOff); pointLight.setColor(White); pointLight.setPosition(0.0f, soundHeight, 0.0f); pointLight.setInfluencingBounds(worldBounds); pointLight.setCapability(Light.ALLOW_STATE_WRITE); scene.addChild(pointLight); // Add a basic ambient light for when all sounds (and // their lights) are off so that the world isn't dark AmbientLight amb = new AmbientLight(); amb.setEnable(true); amb.setColor(Gray); amb.setInfluencingBounds(worldBounds); amb.setCapability(Light.ALLOW_STATE_WRITE); scene.addChild(amb); // Build foreground geometry scene.addChild(buildForeground()); return scene; } //-------------------------------------------------------------- // FOREGROUND CONTENT //-------------------------------------------------------------- private Group buildForeground() { // // Create a group for the foreground, and move // everything up a bit. // TransformGroup group = new TransformGroup(); Transform3D tr = new Transform3D(); tr.setTranslation(new Vector3f(0.0f, -1.6f, 0.0f)); group.setTransform(tr); // // Load textures // if (debug) System.err.println(" textures..."); Texture groundTex = null; Texture spurTex = null; Texture domeTex = null; TextureLoader texLoader = null; ImageComponent image = null; texLoader = new TextureLoader("flooring.jpg", this); image = texLoader.getImage(); if (image == null) System.err.println("Cannot load flooring.jpg texture"); else { groundTex = texLoader.getTexture(); groundTex.setBoundaryModeS(Texture.WRAP); groundTex.setBoundaryModeT(Texture.WRAP); groundTex.setMinFilter(Texture.NICEST); groundTex.setMagFilter(Texture.NICEST); groundTex.setMipMapMode(Texture.BASE_LEVEL); groundTex.setEnable(true); } texLoader = new TextureLoader("granite07rev.jpg", this); Texture columnTex = texLoader.getTexture(); if (columnTex == null) System.err.println("Cannot load granite07rev.jpg texture"); else { columnTex.setBoundaryModeS(Texture.WRAP); columnTex.setBoundaryModeT(Texture.WRAP); columnTex.setMinFilter(Texture.NICEST); columnTex.setMagFilter(Texture.NICEST); columnTex.setMipMapMode(Texture.BASE_LEVEL); columnTex.setEnable(true); } texLoader = new TextureLoader("brtsky.jpg", this); Texture boxTex = texLoader.getTexture(); if (boxTex == null) System.err.println("Cannot load brtsky.jpg texture"); else { boxTex.setBoundaryModeS(Texture.WRAP); boxTex.setBoundaryModeT(Texture.WRAP); boxTex.setMinFilter(Texture.NICEST); boxTex.setMagFilter(Texture.NICEST); boxTex.setMipMapMode(Texture.BASE_LEVEL); boxTex.setEnable(true); } // // Build the ground // if (debug) System.err.println(" ground..."); Appearance groundApp = new Appearance(); Material groundMat = new Material(); groundMat.setAmbientColor(0.3f, 0.3f, 0.3f); groundMat.setDiffuseColor(0.7f, 0.7f, 0.7f); groundMat.setSpecularColor(0.0f, 0.0f, 0.0f); groundApp.setMaterial(groundMat); tr = new Transform3D(); tr.setScale(new Vector3d(16.0, 4.0, 1.0)); TextureAttributes groundTexAtt = new TextureAttributes(); groundTexAtt.setTextureMode(TextureAttributes.MODULATE); groundTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); groundTexAtt.setTextureTransform(tr); groundApp.setTextureAttributes(groundTexAtt); if (groundTex != null) groundApp.setTexture(groundTex); ElevationGrid ground = new ElevationGrid(11, // X dimension 11, // Z dimension 2.0f, // X spacing 2.0f, // Z spacing // Automatically use zero heights groundApp); // Appearance group.addChild(ground); // // Create a column appearance used for both columns. // Appearance columnApp = new Appearance(); Material columnMat = new Material(); columnMat.setAmbientColor(0.6f, 0.6f, 0.6f); columnMat.setDiffuseColor(1.0f, 1.0f, 1.0f); columnMat.setSpecularColor(0.0f, 0.0f, 0.0f); columnApp.setMaterial(columnMat); TextureAttributes columnTexAtt = new TextureAttributes(); columnTexAtt.setTextureMode(TextureAttributes.MODULATE); columnTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); columnApp.setTextureAttributes(columnTexAtt); if (columnTex != null) columnApp.setTexture(columnTex); // // To give the point sound an apparent location, // build a column and a set of three co-located // tumbling boxes hovering above the column. // TransformGroup pointGroup = new TransformGroup(); tr.setIdentity(); tr.setTranslation(new Vector3f(pointX, 0.0f, 0.0f)); pointGroup.setTransform(tr); GothicColumn column = new GothicColumn(1.0f, // height 0.2f, // radius GothicColumn.BUILD_TOP, // flags columnApp); // appearance pointGroup.addChild(column); TransformGroup rotThing = new TransformGroup(); tr.setIdentity(); tr.setTranslation(new Vector3f(0.0f, soundHeight, 0.0f)); rotThing.setTransform(tr); Appearance boxApp = new Appearance(); // No material -- make it emissive TextureAttributes boxTexAtt = new TextureAttributes(); boxTexAtt.setTextureMode(TextureAttributes.REPLACE); boxTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); boxApp.setTextureAttributes(boxTexAtt); if (boxTex != null) boxApp.setTexture(boxTex); rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height, // depth boxApp, // Appearance 40000, 32000, 26000));// XYZ tumble durations rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height, // depth boxApp, // Appearance 38000, 30000, 28000));// XYZ tumble durations rotThing.addChild(buildTumblingBox(0.4f, 0.4f, 0.4f, // width, height, // depth boxApp, // Appearance 30000, 26000, 34000));// XYZ tumble durations pointGroup.addChild(rotThing); group.addChild(pointGroup); return group; } private int[] coordinateIndices = { 0, 1, 5, 4, // front 1, 2, 6, 5, // right 2, 3, 7, 6, // back 3, 0, 4, 7, // left 4, 5, 6, 7, // top 3, 2, 1, 0, // bottom }; private float[] textureCoordinates = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, }; private int[] textureCoordinateIndices = { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, }; private float[] normals = { 0.0f, 0.0f, 1.0f, // front 1.0f, 0.0f, 0.0f, // right 0.0f, 0.0f, -1.0f, // back -1.0f, 0.0f, 0.0f, // left 0.0f, 1.0f, 0.0f, // top 0.0f, -1.0f, 0.0f, // bottom }; private int[] normalIndices = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, }; private Shape3D buildBox(float width, float height, float depth, Appearance app) { float w2 = width / 2.0f; float h2 = height / 2.0f; float d2 = depth / 2.0f; float[] coordinates = new float[8 * 3]; int n = 0; // Around the bottom of the box coordinates[n + 0] = -w2; coordinates[n + 1] = -h2; coordinates[n + 2] = d2; n += 3; coordinates[n + 0] = w2; coordinates[n + 1] = -h2; coordinates[n + 2] = d2; n += 3; coordinates[n + 0] = w2; coordinates[n + 1] = -h2; coordinates[n + 2] = -d2; n += 3; coordinates[n + 0] = -w2; coordinates[n + 1] = -h2; coordinates[n + 2] = -d2; n += 3; // Around the top of the box coordinates[n + 0] = -w2; coordinates[n + 1] = h2; coordinates[n + 2] = d2; n += 3; coordinates[n + 0] = w2; coordinates[n + 1] = h2; coordinates[n + 2] = d2; n += 3; coordinates[n + 0] = w2; coordinates[n + 1] = h2; coordinates[n + 2] = -d2; n += 3; coordinates[n + 0] = -w2; coordinates[n + 1] = h2; coordinates[n + 2] = -d2; n += 3; IndexedQuadArray quads = new IndexedQuadArray(coordinates.length, // vertex // count GeometryArray.COORDINATES | GeometryArray.NORMALS | GeometryArray.TEXTURE_COORDINATE_2, coordinateIndices.length); quads.setCoordinates(0, coordinates); quads.setCoordinateIndices(0, coordinateIndices); quads.setNormals(0, normals); quads.setNormalIndices(0, normalIndices); quads.setTextureCoordinates(0, textureCoordinates); quads.setTextureCoordinateIndices(0, textureCoordinateIndices); Shape3D shape = new Shape3D(quads, app); return shape; } private Group buildTumblingBox(float width, float height, float depth, Appearance app, int xDur, int yDur, int zDur) { BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Build a box to tumble Shape3D box = buildBox(width, height, depth, app); // Build a set of nested transform groups. Attach // to each one a behavior that rotates around an X, // Y, or Z axis. Use different rotation speeds for // each axis to create a tumbling effect. TransformGroup outerGroup = new TransformGroup(); outerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D yAxis = new Transform3D(); Alpha alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none xDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration RotationInterpolator rot = new RotationInterpolator(alpha, // Alpha // control outerGroup, // Target transform group yAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); outerGroup.addChild(rot); TransformGroup middleGroup = new TransformGroup(); middleGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D xAxis = new Transform3D(); xAxis.rotZ(-1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none yDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control middleGroup, // Target transform group xAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); middleGroup.addChild(rot); outerGroup.addChild(middleGroup); TransformGroup innerGroup = new TransformGroup(); innerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D zAxis = new Transform3D(); zAxis.rotX(1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none zDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control innerGroup, // Target transform group zAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); innerGroup.addChild(rot); middleGroup.addChild(innerGroup); innerGroup.addChild(box); return outerGroup; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- // // Main // public static void main(String[] args) { ExSound ex = new ExSound(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } // On/off choices private boolean backgroundSoundOnOff = false; private CheckboxMenuItem backgroundSoundOnOffMenu = null; private boolean pointSoundOnOff = false; private CheckboxMenuItem pointSoundOnOffMenu = null; // Volume menu choices private NameValue[] volumes = { new NameValue("Silent", new Float(0.0f)), new NameValue("Low volume", new Float(0.5f)), new NameValue("Medium volume", new Float(1.0f)), new NameValue("High volume", new Float(2.0f)), }; private int currentVolume = 2; private CheckboxMenu volumeMenu = null; // // Initialize the GUI (application and applet) // public void initialize(String[] args) { // Initialize the window, menubar, etc. super.initialize(args); exampleFrame.setTitle("Java 3D Sound Example"); // // Add a menubar menu to change node parameters // Background sound on/off // Point sound on/off // Menu m = new Menu("Sounds"); backgroundSoundOnOffMenu = new CheckboxMenuItem("Background sound on/off", backgroundSoundOnOff); backgroundSoundOnOffMenu.addItemListener(this); m.add(backgroundSoundOnOffMenu); pointSoundOnOffMenu = new CheckboxMenuItem("Point sound on/off", pointSoundOnOff); pointSoundOnOffMenu.addItemListener(this); m.add(pointSoundOnOffMenu); volumeMenu = new CheckboxMenu("Volume", volumes, currentVolume, this); m.add(volumeMenu); exampleMenuBar.add(m); } // // Handle checkboxes and menu choices // public void checkboxChanged(CheckboxMenu menu, int check) { if (menu == volumeMenu) { // Change the sound volumes currentVolume = check; float vol = ((Float) volumes[check].value).floatValue(); backgroundSound.setInitialGain(vol); pointSound.setInitialGain(vol); return; } // Handle all other checkboxes super.checkboxChanged(menu, check); } public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); if (src == backgroundSoundOnOffMenu) { // Turn the background sound on or off backgroundSoundOnOff = backgroundSoundOnOffMenu.getState(); backgroundSound.setEnable(backgroundSoundOnOff); ambientLight.setEnable(backgroundSoundOnOff); return; } if (src == pointSoundOnOffMenu) { // Turn the point sound on or off pointSoundOnOff = pointSoundOnOffMenu.getState(); pointSound.setEnable(pointSoundOnOff); pointLight.setEnable(pointSoundOnOff); return; } // Handle all other checkboxes super.itemStateChanged(event); } } // //CLASS //ElevationGrid - a 3D terrain grid built from a list of heights // //DESCRIPTION //This class creates a 3D terrain on a grid whose X and Z dimensions, //and row/column spacing are parameters, along with a list of heights //(elevations), one per grid row/column pair. // class ElevationGrid extends Primitive { // Parameters protected int xDimension = 0, zDimension = 0; protected double xSpacing = 0.0, zSpacing = 0.0; protected double[] heights = null; // 3D nodes private Appearance mainAppearance = null; private Shape3D shape = null; private IndexedTriangleStripArray tristrip = null; // // Construct an elevation grid // public ElevationGrid() { xDimension = 2; zDimension = 2; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim) { xDimension = xDim; zDimension = zDim; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = app; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = app; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double[] h) { this(xDim, zDim, 1.0, 1.0, h, null); } public ElevationGrid(int xDim, int zDim, double[] h, Appearance app) { this(xDim, zDim, 1.0, 1.0, h, app); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, double[] h) { this(xDim, zDim, xSpace, zSpace, h, null); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, double[] h, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = app; if (h == null) zeroHeights(); else { heights = new double[h.length]; for (int i = 0; i < h.length; i++) heights[i] = h[i]; } rebuild(); } private void zeroHeights() { int n = xDimension * zDimension; heights = new double[n]; for (int i = 0; i < n; i++) heights[i] = 0.0; } private void rebuild() { // Build a shape if (shape == null) { shape = new Shape3D(); shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE); shape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE); shape.setAppearance(mainAppearance); addChild(shape); } else { shape.setAppearance(mainAppearance); } if (xDimension < 2 || zDimension < 2 || heights == null || heights.length < 4) { tristrip = null; shape.setGeometry(null); return; } // Create a list of coordinates, one per grid row/column double[] coordinates = new double[xDimension * zDimension * 3]; double x, z; int n = 0, k = 0; z = ((double) (zDimension - 1)) * zSpacing / 2.0; // start at front edge for (int i = 0; i < zDimension; i++) { x = -((double) (xDimension - 1)) * xSpacing / 2.0;// start at left // edge for (int j = 0; j < xDimension; j++) { coordinates[n++] = x; coordinates[n++] = heights[k++]; coordinates[n++] = z; x += xSpacing; } z -= zSpacing; } // Create a list of normals, one per grid row/column float[] normals = new float[xDimension * zDimension * 3]; Vector3f one = new Vector3f(0.0f, 0.0f, 0.0f); Vector3f two = new Vector3f(0.0f, 0.0f, 0.0f); Vector3f norm = new Vector3f(0.0f, 0.0f, 0.0f); n = 0; k = 0; for (int i = 0; i < zDimension - 1; i++) { for (int j = 0; j < xDimension - 1; j++) { // Vector to right in X one.set((float) xSpacing, (float) (heights[k + 1] - heights[k]), 0.0f); // Vector back in Z two.set(0.0f, (float) (heights[k + xDimension] - heights[k]), (float) -zSpacing); // Cross them to get the normal norm.cross(one, two); normals[n++] = norm.x; normals[n++] = norm.y; normals[n++] = norm.z; k++; } // Last normal in row is a copy of the previous one normals[n] = normals[n - 3]; // X normals[n + 1] = normals[n - 2]; // Y normals[n + 2] = normals[n - 1]; // Z n += 3; k++; } // Last row of normals is a copy of the previous row for (int j = 0; j < xDimension; j++) { normals[n] = normals[n - xDimension * 3]; // X normals[n + 1] = normals[n - xDimension * 3 + 1]; // Y normals[n + 2] = normals[n - xDimension * 3 + 2]; // Z n += 3; } // Create a list of texture coordinates, one per grid row/column float[] texcoordinates = new float[xDimension * zDimension * 2]; float deltaS = 1.0f / (float) (xDimension - 1); float deltaT = 1.0f / (float) (zDimension - 1); float s = 0.0f; float t = 0.0f; n = 0; for (int i = 0; i < zDimension; i++) { s = 0.0f; for (int j = 0; j < xDimension; j++) { texcoordinates[n++] = s; texcoordinates[n++] = t; s += deltaS; } t += deltaT; } // Create a list of triangle strip indexes. Each strip goes // down one row (X direction) of the elevation grid. int[] indexes = new int[xDimension * (zDimension - 1) * 2]; int[] stripCounts = new int[zDimension - 1]; n = 0; k = 0; for (int i = 0; i < zDimension - 1; i++) { stripCounts[i] = xDimension * 2; for (int j = 0; j < xDimension; j++) { indexes[n++] = k + xDimension; indexes[n++] = k; k++; } } // Create geometry for collection of triangle strips, one // strip per row of the elevation grid tristrip = new IndexedTriangleStripArray(coordinates.length, GeometryArray.COORDINATES | GeometryArray.NORMALS | GeometryArray.TEXTURE_COORDINATE_2, indexes.length, stripCounts); tristrip.setCoordinates(0, coordinates); tristrip.setNormals(0, normals); tristrip.setTextureCoordinates(0, texcoordinates); tristrip.setCoordinateIndices(0, indexes); tristrip.setNormalIndices(0, indexes); tristrip.setTextureCoordinateIndices(0, indexes); // Set the geometry for the shape shape.setGeometry(tristrip); } // // Control the appearance // public void setAppearance(Appearance app) { mainAppearance = app; if (shape != null) shape.setAppearance(mainAppearance); } // // Control grid parameters // public void setHeights(double[] h) { if (h == null) zeroHeights(); else { heights = new double[h.length]; for (int i = 0; i < h.length; i++) heights[i] = h[i]; } rebuild(); } public double[] getHeights() { return heights; } public void setXDimension(int xDim) { xDimension = xDim; rebuild(); } public int getXDimension() { return xDimension; } public void setZDimension(int zDim) { zDimension = zDim; rebuild(); } public int getZDimension() { return zDimension; } public void setXSpacing(double xSpace) { xSpacing = xSpace; rebuild(); } public double getXSpacing() { return xSpacing; } public void setZSpacing(double zSpace) { zSpacing = zSpace; rebuild(); } public double getZSpacing() { return zSpacing; } // // Provide info on the shape and geometry // public Shape3D getShape(int partid) { return shape; } public int getNumTriangles() { return xDimension * zDimension * 2; } public int getNumVertices() { return xDimension * zDimension; } /* * (non-Javadoc) * * @see com.sun.j3d.utils.geometry.Primitive#getAppearance(int) */ public Appearance getAppearance(int arg0) { // TODO Auto-generated method stub return null; } } // //CLASS //GothicColumn - Gothic-style column used in example scenes // //DESCRIPTION //This class builds a Gothic-column architectural column. // //SEE ALSO //? // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // // class GothicColumn extends Primitive { // // Construction Flags // public final static int BUILD_TAPERED_CROWN = 0x1; public final static int BUILD_TOP = 0x2; public final static int BUILD_BOTTOM = 0x4; // // 3D nodes // private Appearance mainAppearance = null; // // Construct a column // public GothicColumn(float height, float radius, Appearance app) { this(height, radius, 0, app); } public GothicColumn(float height, float radius, int flags, Appearance app) { mainAppearance = app; // Compute sizes and positions based upon the // desired main column radius // Base box float baseWidth = 2.7f * radius; float baseDepth = baseWidth; float baseHeight = 0.75f * radius / 2.0f; // Base box #2 float base2Width = 0.8f * baseWidth; float base2Depth = base2Width; float base2Height = baseHeight / 2.0f; // Tapered crown float crownWidth1 = 2.0f * 0.707f * radius; float crownDepth1 = crownWidth1; float crownWidth2 = 1.0f * base2Width; float crownDepth2 = 1.0f * base2Depth; float crownHeight = 2.0f * baseHeight; // Box above tapered crown float crown2Width = 1.1f * base2Width; float crown2Depth = 1.1f * base2Depth; float crown2Height = base2Height; // Final crown box float crown3Width = 1.1f * baseWidth; float crown3Depth = 1.1f * baseDepth; float crown3Height = baseHeight; // Cylindrical column // Extend it up and into the tapered crown float columnHeight = height - baseHeight - base2Height - crown2Height - crown3Height; float columnRadius = radius; float baseY = baseHeight / 2.0f; float base2Y = baseHeight + base2Height / 2.0f; float columnY = baseHeight + base2Height + columnHeight / 2.0f; float crown2Y = baseHeight + base2Height + columnHeight + crown2Height / 2.0f; float crown3Y = baseHeight + base2Height + columnHeight + crown2Height + crown3Height / 2.0f; float crownY = crown2Y - crown2Height / 2.0f - crownHeight / 2.0f; // Column base box int fl = BUILD_TOP; if ((flags & BUILD_BOTTOM) != 0) fl |= BUILD_BOTTOM; addBox(baseWidth, baseHeight, baseDepth, baseY, fl); // Column base box #2 (no bottom) addBox(base2Width, base2Height, base2Depth, base2Y, BUILD_TOP); // Main column (no top or bottom) addCylinder(columnRadius, columnHeight, columnY); // Column crown tapered box (no top or bottom) if ((flags & BUILD_TAPERED_CROWN) != 0) { addBox(crownWidth1, crownHeight, crownDepth1, crownY, crownWidth2, crownDepth2, 0); } // Box above tapered crown (no top) addBox(crown2Width, crown2Height, crown2Depth, crown2Y, BUILD_BOTTOM); // Final crown box fl = BUILD_BOTTOM; if ((flags & BUILD_TOP) != 0) fl |= BUILD_TOP; addBox(crown3Width, crown3Height, crown3Depth, crown3Y, fl); } // // Add an untapered box // private void addBox(float width, float height, float depth, float y) { addBox(width, height, depth, y, width, depth, 0); } private void addBox(float width, float height, float depth, float y, int flags) { addBox(width, height, depth, y, width, depth, flags); } private void addBox(float width, float height, float depth, float y, float width2, float depth2) { addBox(width, height, depth, y, width2, depth2, 0); } // // Add a tapered box // private void addBox(float width, float height, float depth, float y, float width2, float depth2, int flags) { float[] coordinates = { // around the bottom -width / 2.0f, -height / 2.0f, depth / 2.0f, width / 2.0f, -height / 2.0f, depth / 2.0f, width / 2.0f, -height / 2.0f, -depth / 2.0f, -width / 2.0f, -height / 2.0f, -depth / 2.0f, // around the top -width2 / 2.0f, height / 2.0f, depth2 / 2.0f, width2 / 2.0f, height / 2.0f, depth2 / 2.0f, width2 / 2.0f, height / 2.0f, -depth2 / 2.0f, -width2 / 2.0f, height / 2.0f, -depth2 / 2.0f, }; int[] fullCoordinateIndexes = { 0, 1, 5, 4, // front 1, 2, 6, 5, // right 2, 3, 7, 6, // back 3, 0, 4, 7, // left 4, 5, 6, 7, // top 3, 2, 1, 0, // bottom }; float v = -(width2 - width) / height; float[] normals = { 0.0f, v, 1.0f, // front 1.0f, v, 0.0f, // right 0.0f, v, -1.0f, // back -1.0f, v, 0.0f, // left 0.0f, 1.0f, 0.0f, // top 0.0f, -1.0f, 0.0f, // bottom }; int[] fullNormalIndexes = { 0, 0, 0, 0, // front 1, 1, 1, 1, // right 2, 2, 2, 2, // back 3, 3, 3, 3, // left 4, 4, 4, 4, // top 5, 5, 5, 5, // bottom }; float[] textureCoordinates = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, }; int[] fullTextureCoordinateIndexes = { 0, 1, 2, 3, // front 0, 1, 2, 3, // right 0, 1, 2, 3, // back 0, 1, 2, 3, // left 0, 1, 2, 3, // top 0, 1, 2, 3, // bottom }; // Select indexes needed int[] coordinateIndexes; int[] normalIndexes; int[] textureCoordinateIndexes; if (flags == 0) { // build neither top or bottom coordinateIndexes = new int[4 * 4]; textureCoordinateIndexes = new int[4 * 4]; normalIndexes = new int[4 * 4]; for (int i = 0; i < 4 * 4; i++) { coordinateIndexes[i] = fullCoordinateIndexes[i]; textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i]; normalIndexes[i] = fullNormalIndexes[i]; } } else if ((flags & (BUILD_TOP | BUILD_BOTTOM)) == (BUILD_TOP | BUILD_BOTTOM)) { // build top and bottom coordinateIndexes = fullCoordinateIndexes; textureCoordinateIndexes = fullTextureCoordinateIndexes; normalIndexes = fullNormalIndexes; } else if ((flags & BUILD_TOP) != 0) { // build top but not bottom coordinateIndexes = new int[5 * 4]; textureCoordinateIndexes = new int[5 * 4]; normalIndexes = new int[5 * 4]; for (int i = 0; i < 5 * 4; i++) { coordinateIndexes[i] = fullCoordinateIndexes[i]; textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i]; normalIndexes[i] = fullNormalIndexes[i]; } } else { // build bottom but not top coordinateIndexes = new int[5 * 4]; textureCoordinateIndexes = new int[5 * 4]; normalIndexes = new int[5 * 4]; for (int i = 0; i < 4 * 4; i++) { coordinateIndexes[i] = fullCoordinateIndexes[i]; textureCoordinateIndexes[i] = fullTextureCoordinateIndexes[i]; normalIndexes[i] = fullNormalIndexes[i]; } for (int i = 5 * 4; i < 6 * 4; i++) { coordinateIndexes[i - 4] = fullCoordinateIndexes[i]; textureCoordinateIndexes[i - 4] = fullTextureCoordinateIndexes[i]; normalIndexes[i - 4] = fullNormalIndexes[i]; } } IndexedQuadArray quads = new IndexedQuadArray(coordinates.length, // number // of // vertexes GeometryArray.COORDINATES | // vertex coordinates given GeometryArray.NORMALS | // normals given GeometryArray.TEXTURE_COORDINATE_2, // texture // coordinates given coordinateIndexes.length); // number of coordinate indexes quads.setCoordinates(0, coordinates); quads.setCoordinateIndices(0, coordinateIndexes); quads.setNormals(0, normals); quads.setNormalIndices(0, normalIndexes); quads.setTextureCoordinates(0, textureCoordinates); quads.setTextureCoordinateIndices(0, textureCoordinateIndexes); Shape3D box = new Shape3D(quads, mainAppearance); Vector3f trans = new Vector3f(0.0f, y, 0.0f); Transform3D tr = new Transform3D(); tr.set(trans); // translate TransformGroup tg = new TransformGroup(tr); tg.addChild(box); addChild(tg); } private final static int NSTEPS = 16; private void addCylinder(float radius, float height, float y) { // // Compute coordinates, normals, and texture coordinates // around the top and bottom of a cylinder // float[] coordinates = new float[NSTEPS * 2 * 3]; // xyz float[] normals = new float[NSTEPS * 2 * 3]; // xyz vector float[] textureCoordinates = new float[NSTEPS * 2 * 2]; // st float angle = 0.0f; float deltaAngle = 2.0f * (float) Math.PI / ((float) NSTEPS - 1); float s = 0.0f; float deltaS = 1.0f / ((float) NSTEPS - 1); int n = 0; int tn = 0; float h2 = height / 2.0f; for (int i = 0; i < NSTEPS; i++) { // bottom normals[n + 0] = (float) Math.cos(angle); normals[n + 1] = 0.0f; normals[n + 2] = -(float) Math.sin(angle); coordinates[n + 0] = radius * normals[n + 0]; coordinates[n + 1] = -h2; coordinates[n + 2] = radius * normals[n + 2]; textureCoordinates[tn + 0] = s; textureCoordinates[tn + 1] = 0.0f; n += 3; tn += 2; // top normals[n + 0] = normals[n - 3]; normals[n + 1] = 0.0f; normals[n + 2] = normals[n - 1]; coordinates[n + 0] = coordinates[n - 3]; coordinates[n + 1] = h2; coordinates[n + 2] = coordinates[n - 1]; textureCoordinates[tn + 0] = s; textureCoordinates[tn + 1] = 1.0f; n += 3; tn += 2; angle += deltaAngle; s += deltaS; } // // Compute coordinate indexes, normal indexes, and texture // coordinate indexes awround the sides of a cylinder. // For this application, we don't need top or bottom, so // skip them. // int[] indexes = new int[NSTEPS * 4]; n = 0; int p = 0; // panel count for (int i = 0; i < NSTEPS - 1; i++) { indexes[n + 0] = p; // bottom left indexes[n + 1] = p + 2; // bottom right (next panel) indexes[n + 2] = p + 3; // top right (next panel) indexes[n + 3] = p + 1; // top left n += 4; p += 2; } indexes[n + 0] = p; // bottom left indexes[n + 1] = 0; // bottom right (next panel) indexes[n + 2] = 1; // top right (next panel) indexes[n + 3] = p + 1; // top left IndexedQuadArray quads = new IndexedQuadArray(coordinates.length / 3, // number // of // vertexes GeometryArray.COORDINATES | // format GeometryArray.NORMALS | GeometryArray.TEXTURE_COORDINATE_2, indexes.length); // number // of // indexes quads.setCoordinates(0, coordinates); quads.setTextureCoordinates(0, textureCoordinates); quads.setNormals(0, normals); quads.setCoordinateIndices(0, indexes); quads.setTextureCoordinateIndices(0, indexes); quads.setNormalIndices(0, indexes); Shape3D shape = new Shape3D(quads, mainAppearance); Vector3f trans = new Vector3f(0.0f, y, 0.0f); Transform3D tr = new Transform3D(); tr.set(trans); // translate TransformGroup tg = new TransformGroup(tr); tg.addChild(shape); addChild(tg); } // // Control the appearance // public void setAppearance(Appearance app) { mainAppearance = app; } // // Provide info on the shape and geometry // public Shape3D getShape(int partid) { return null; } public int getNumTriangles() { return 0; } public int getNumVertices() { return 2; } /* * (non-Javadoc) * * @see com.sun.j3d.utils.geometry.Primitive#getAppearance(int) */ public Appearance getAppearance(int arg0) { // TODO Auto-generated method stub return null; } } /** * The Example class is a base class extended by example applications. The class * provides basic features to create a top-level frame, add a menubar and * Canvas3D, build the universe, set up "examine" and "walk" style navigation * behaviors, and provide hooks so that subclasses can add 3D content to the * example's universe. * <P> * Using this Example class simplifies the construction of example applications, * enabling the author to focus upon 3D content and not the busywork of creating * windows, menus, and universes. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class Java3DFrame extends Applet implements WindowListener, ActionListener, ItemListener, CheckboxMenuListener { // Navigation types public final static int Walk = 0; public final static int Examine = 1; // Should the scene be compiled? private boolean shouldCompile = true; // GUI objects for our subclasses protected Java3DFrame example = null; protected Frame exampleFrame = null; protected MenuBar exampleMenuBar = null; protected Canvas3D exampleCanvas = null; protected TransformGroup exampleViewTransform = null; protected TransformGroup exampleSceneTransform = null; protected boolean debug = false; // Private GUI objects and state private boolean headlightOnOff = true; private int navigationType = Examine; private CheckboxMenuItem headlightMenuItem = null; private CheckboxMenuItem walkMenuItem = null; private CheckboxMenuItem examineMenuItem = null; private DirectionalLight headlight = null; private ExamineViewerBehavior examineBehavior = null; private WalkViewerBehavior walkBehavior = null; //-------------------------------------------------------------- // ADMINISTRATION //-------------------------------------------------------------- /** * The main program entry point when invoked as an application. Each example * application that extends this class must define their own main. * * @param args * a String array of command-line arguments */ public static void main(String[] args) { Java3DFrame ex = new Java3DFrame(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } /** * Constructs a new Example object. * * @return a new Example that draws no 3D content */ public Java3DFrame() { // Do nothing } /** * Initializes the application when invoked as an applet. */ public void init() { // Collect properties into String array String[] args = new String[2]; // NOTE: to be done still... this.initialize(args); this.buildUniverse(); this.showFrame(); // NOTE: add something to the browser page? } /** * Initializes the Example by parsing command-line arguments, building an * AWT Frame, constructing a menubar, and creating the 3D canvas. * * @param args * a String array of command-line arguments */ protected void initialize(String[] args) { example = this; // Parse incoming arguments parseArgs(args); // Build the frame if (debug) System.err.println("Building GUI..."); exampleFrame = new Frame(); exampleFrame.setSize(640, 480); exampleFrame.setTitle("Java 3D Example"); exampleFrame.setLayout(new BorderLayout()); // Set up a close behavior exampleFrame.addWindowListener(this); // Create a canvas exampleCanvas = new Canvas3D(null); exampleCanvas.setSize(630, 460); exampleFrame.add("Center", exampleCanvas); // Build the menubar exampleMenuBar = this.buildMenuBar(); exampleFrame.setMenuBar(exampleMenuBar); // Pack exampleFrame.pack(); exampleFrame.validate(); // exampleFrame.setVisible( true ); } /** * Parses incoming command-line arguments. Applications that subclass this * class may override this method to support their own command-line * arguments. * * @param args * a String array of command-line arguments */ protected void parseArgs(String[] args) { for (int i = 0; i < args.length; i++) { if (args[i].equals("-d")) debug = true; } } //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- /** * Builds the 3D universe by constructing a virtual universe (via * SimpleUniverse), a view platform (via SimpleUniverse), and a view (via * SimpleUniverse). A headlight is added and a set of behaviors initialized * to handle navigation types. */ protected void buildUniverse() { // // Create a SimpleUniverse object, which builds: // // - a Locale using the given hi-res coordinate origin // // - a ViewingPlatform which in turn builds: // - a MultiTransformGroup with which to move the // the ViewPlatform about // // - a ViewPlatform to hold the view // // - a BranchGroup to hold avatar geometry (if any) // // - a BranchGroup to hold view platform // geometry (if any) // // - a Viewer which in turn builds: // - a PhysicalBody which characterizes the user's // viewing preferences and abilities // // - a PhysicalEnvironment which characterizes the // user's rendering hardware and software // // - a JavaSoundMixer which initializes sound // support within the 3D environment // // - a View which renders the scene into a Canvas3D // // All of these actions could be done explicitly, but // using the SimpleUniverse utilities simplifies the code. // if (debug) System.err.println("Building scene graph..."); SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate // for the origin - // use default 1, // Number of transforms in MultiTransformGroup exampleCanvas, // Canvas3D into which to draw null); // URL for user configuration file - use defaults // // Get the viewer and create an audio device so that // sound will be enabled in this content. // Viewer viewer = universe.getViewer(); viewer.createAudioDevice(); // // Get the viewing platform created by SimpleUniverse. // From that platform, get the inner-most TransformGroup // in the MultiTransformGroup. That inner-most group // contains the ViewPlatform. It is this inner-most // TransformGroup we need in order to: // // - add a "headlight" that always aims forward from // the viewer // // - change the viewing direction in a "walk" style // // The inner-most TransformGroup's transform will be // changed by the walk behavior (when enabled). // ViewingPlatform viewingPlatform = universe.getViewingPlatform(); exampleViewTransform = viewingPlatform.getViewPlatformTransform(); // // Create a "headlight" as a forward-facing directional light. // Set the light's bounds to huge. Since we want the light // on the viewer's "head", we need the light within the // TransformGroup containing the ViewPlatform. The // ViewingPlatform class creates a handy hook to do this // called "platform geometry". The PlatformGeometry class is // subclassed off of BranchGroup, and is intended to contain // a description of the 3D platform itself... PLUS a headlight! // So, to add the headlight, create a new PlatformGeometry group, // add the light to it, then add that platform geometry to the // ViewingPlatform. // BoundingSphere allBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100000.0); PlatformGeometry pg = new PlatformGeometry(); headlight = new DirectionalLight(); headlight.setColor(White); headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f)); headlight.setInfluencingBounds(allBounds); headlight.setCapability(Light.ALLOW_STATE_WRITE); pg.addChild(headlight); viewingPlatform.setPlatformGeometry(pg); // // Create the 3D content BranchGroup, containing: // // - a TransformGroup who's transform the examine behavior // will change (when enabled). // // - 3D geometry to view // // Build the scene root BranchGroup sceneRoot = new BranchGroup(); // Build a transform that we can modify exampleSceneTransform = new TransformGroup(); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND); // // Build the scene, add it to the transform, and add // the transform to the scene root // if (debug) System.err.println(" scene..."); Group scene = this.buildScene(); exampleSceneTransform.addChild(scene); sceneRoot.addChild(exampleSceneTransform); // // Create a pair of behaviors to implement two navigation // types: // // - "examine": a style where mouse drags rotate about // the scene's origin as if it is an object under // examination. This is similar to the "Examine" // navigation type used by VRML browsers. // // - "walk": a style where mouse drags rotate about // the viewer's center as if the viewer is turning // about to look at a scene they are in. This is // similar to the "Walk" navigation type used by // VRML browsers. // // Aim the examine behavior at the scene's TransformGroup // and add the behavior to the scene root. // // Aim the walk behavior at the viewing platform's // TransformGroup and add the behavior to the scene root. // // Enable one (and only one!) of the two behaviors // depending upon the current navigation type. // examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform // gorup // to // modify exampleFrame); // Parent frame for cusor changes examineBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(examineBehavior); walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform // group to // modify exampleFrame); // Parent frame for cusor changes walkBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(walkBehavior); if (navigationType == Walk) { examineBehavior.setEnable(false); walkBehavior.setEnable(true); } else { examineBehavior.setEnable(true); walkBehavior.setEnable(false); } // // Compile the scene branch group and add it to the // SimpleUniverse. // if (shouldCompile) sceneRoot.compile(); universe.addBranchGraph(sceneRoot); reset(); } /** * Builds the scene. Example application subclasses should replace this * method with their own method to build 3D content. * * @return a Group containing 3D content to display */ public Group buildScene() { // Build the scene group containing nothing Group scene = new Group(); return scene; } //-------------------------------------------------------------- // SET/GET METHODS //-------------------------------------------------------------- /** * Sets the headlight on/off state. The headlight faces forward in the * direction the viewer is facing. Example applications that add their own * lights will typically turn the headlight off. A standard menu item * enables the headlight to be turned on and off via user control. * * @param onOff * a boolean turning the light on (true) or off (false) */ public void setHeadlightEnable(boolean onOff) { headlightOnOff = onOff; if (headlight != null) headlight.setEnable(headlightOnOff); if (headlightMenuItem != null) headlightMenuItem.setState(headlightOnOff); } /** * Gets the headlight on/off state. * * @return a boolean indicating if the headlight is on or off */ public boolean getHeadlightEnable() { return headlightOnOff; } /** * Sets the navigation type to be either Examine or Walk. The Examine * navigation type sets up behaviors that use mouse drags to rotate and * translate scene content as if it is an object held at arm's length and * under examination. The Walk navigation type uses mouse drags to rotate * and translate the viewer as if they are walking through the content. The * Examine type is the default. * * @param nav * either Walk or Examine */ public void setNavigationType(int nav) { if (nav == Walk) { navigationType = Walk; if (walkMenuItem != null) walkMenuItem.setState(true); if (examineMenuItem != null) examineMenuItem.setState(false); if (walkBehavior != null) walkBehavior.setEnable(true); if (examineBehavior != null) examineBehavior.setEnable(false); } else { navigationType = Examine; if (walkMenuItem != null) walkMenuItem.setState(false); if (examineMenuItem != null) examineMenuItem.setState(true); if (walkBehavior != null) walkBehavior.setEnable(false); if (examineBehavior != null) examineBehavior.setEnable(true); } } /** * Gets the current navigation type, returning either Walk or Examine. * * @return either Walk or Examine */ public int getNavigationType() { return navigationType; } /** * Sets whether the scene graph should be compiled or not. Normally this is * always a good idea. For some example applications that use this Example * framework, it is useful to disable compilation - particularly when nodes * and node components will need to be made un-live in order to make * changes. Once compiled, such components can be made un-live, but they are * still unchangable unless appropriate capabilities have been set. * * @param onOff * a boolean turning compilation on (true) or off (false) */ public void setCompilable(boolean onOff) { shouldCompile = onOff; } /** * Gets whether the scene graph will be compiled or not. * * @return a boolean indicating if scene graph compilation is on or off */ public boolean getCompilable() { return shouldCompile; } //These methods will be replaced // Set the view position and direction public void setViewpoint(Point3f position, Vector3f direction) { Transform3D t = new Transform3D(); t.set(new Vector3f(position)); exampleViewTransform.setTransform(t); // how to set direction? } // Reset transforms public void reset() { Transform3D trans = new Transform3D(); exampleSceneTransform.setTransform(trans); trans.set(new Vector3f(0.0f, 0.0f, 10.0f)); exampleViewTransform.setTransform(trans); setNavigationType(navigationType); } // // Gets the URL (with file: prepended) for the current directory. // This is a terrible hack needed in the Alpha release of Java3D // in order to build a full path URL for loading sounds with // MediaContainer. When MediaContainer is fully implemented, // it should handle relative path names, but not yet. // public String getCurrentDirectory() { // Create a bogus file so that we can query it's path File dummy = new File("dummy.tmp"); String dummyPath = dummy.getAbsolutePath(); // strip "/dummy.tmp" from end of dummyPath and put into 'path' if (dummyPath.endsWith(File.separator + "dummy.tmp")) { int index = dummyPath.lastIndexOf(File.separator + "dummy.tmp"); if (index >= 0) { int pathLength = index + 5; // pre-pend 'file:' char[] charPath = new char[pathLength]; dummyPath.getChars(0, index, charPath, 5); String path = new String(charPath, 0, pathLength); path = "file:" + path.substring(5, pathLength); return path + File.separator; } } return dummyPath + File.separator; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- /** * Builds the example AWT Frame menubar. Standard menus and their options * are added. Applications that subclass this class should build their * menubar additions within their initialize method. * * @return a MenuBar for the AWT Frame */ private MenuBar buildMenuBar() { // Build the menubar MenuBar menuBar = new MenuBar(); // File menu Menu m = new Menu("File"); m.addActionListener(this); m.add("Exit"); menuBar.add(m); // View menu m = new Menu("View"); m.addActionListener(this); m.add("Reset view"); m.addSeparator(); walkMenuItem = new CheckboxMenuItem("Walk"); walkMenuItem.addItemListener(this); m.add(walkMenuItem); examineMenuItem = new CheckboxMenuItem("Examine"); examineMenuItem.addItemListener(this); m.add(examineMenuItem); if (navigationType == Walk) { walkMenuItem.setState(true); examineMenuItem.setState(false); } else { walkMenuItem.setState(false); examineMenuItem.setState(true); } m.addSeparator(); headlightMenuItem = new CheckboxMenuItem("Headlight on/off"); headlightMenuItem.addItemListener(this); headlightMenuItem.setState(headlightOnOff); m.add(headlightMenuItem); menuBar.add(m); return menuBar; } /** * Shows the application's frame, making it and its menubar, 3D canvas, and * 3D content visible. */ public void showFrame() { exampleFrame.show(); } /** * Quits the application. */ public void quit() { System.exit(0); } /** * Handles menu selections. * * @param event * an ActionEvent indicating what menu action requires handling */ public void actionPerformed(ActionEvent event) { String arg = event.getActionCommand(); if (arg.equals("Reset view")) reset(); else if (arg.equals("Exit")) quit(); } /** * Handles checkbox items on a CheckboxMenu. The Example class has none of * its own, but subclasses may have some. * * @param menu * which CheckboxMenu needs action * @param check * which CheckboxMenu item has changed */ public void checkboxChanged(CheckboxMenu menu, int check) { // None for us } /** * Handles on/off checkbox items on a standard menu. * * @param event * an ItemEvent indicating what requires handling */ public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); boolean state; if (src == headlightMenuItem) { state = headlightMenuItem.getState(); headlight.setEnable(state); } else if (src == walkMenuItem) setNavigationType(Walk); else if (src == examineMenuItem) setNavigationType(Examine); } /** * Handles a window closing event notifying the application that the user * has chosen to close the application without selecting the "Exit" menu * item. * * @param event * a WindowEvent indicating the window is closing */ public void windowClosing(WindowEvent event) { quit(); } public void windowClosed(WindowEvent event) { } public void windowOpened(WindowEvent event) { } public void windowIconified(WindowEvent event) { } public void windowDeiconified(WindowEvent event) { } public void windowActivated(WindowEvent event) { } public void windowDeactivated(WindowEvent event) { } // Well known colors, positions, and directions public final static Color3f White = new Color3f(1.0f, 1.0f, 1.0f); public final static Color3f Gray = new Color3f(0.7f, 0.7f, 0.7f); public final static Color3f DarkGray = new Color3f(0.2f, 0.2f, 0.2f); public final static Color3f Black = new Color3f(0.0f, 0.0f, 0.0f); public final static Color3f Red = new Color3f(1.0f, 0.0f, 0.0f); public final static Color3f DarkRed = new Color3f(0.3f, 0.0f, 0.0f); public final static Color3f Yellow = new Color3f(1.0f, 1.0f, 0.0f); public final static Color3f DarkYellow = new Color3f(0.3f, 0.3f, 0.0f); public final static Color3f Green = new Color3f(0.0f, 1.0f, 0.0f); public final static Color3f DarkGreen = new Color3f(0.0f, 0.3f, 0.0f); public final static Color3f Cyan = new Color3f(0.0f, 1.0f, 1.0f); public final static Color3f Blue = new Color3f(0.0f, 0.0f, 1.0f); public final static Color3f DarkBlue = new Color3f(0.0f, 0.0f, 0.3f); public final static Color3f Magenta = new Color3f(1.0f, 0.0f, 1.0f); public final static Vector3f PosX = new Vector3f(1.0f, 0.0f, 0.0f); public final static Vector3f NegX = new Vector3f(-1.0f, 0.0f, 0.0f); public final static Vector3f PosY = new Vector3f(0.0f, 1.0f, 0.0f); public final static Vector3f NegY = new Vector3f(0.0f, -1.0f, 0.0f); public final static Vector3f PosZ = new Vector3f(0.0f, 0.0f, 1.0f); public final static Vector3f NegZ = new Vector3f(0.0f, 0.0f, -1.0f); public final static Point3f Origin = new Point3f(0.0f, 0.0f, 0.0f); public final static Point3f PlusX = new Point3f(0.75f, 0.0f, 0.0f); public final static Point3f MinusX = new Point3f(-0.75f, 0.0f, 0.0f); public final static Point3f PlusY = new Point3f(0.0f, 0.75f, 0.0f); public final static Point3f MinusY = new Point3f(0.0f, -0.75f, 0.0f); public final static Point3f PlusZ = new Point3f(0.0f, 0.0f, 0.75f); public final static Point3f MinusZ = new Point3f(0.0f, 0.0f, -0.75f); } // //INTERFACE //CheckboxMenuListener - listen for checkbox change events // //DESCRIPTION //The checkboxChanged method is called by users of this class //to notify the listener when a checkbox choice has changed on //a CheckboxMenu class menu. // interface CheckboxMenuListener extends EventListener { public void checkboxChanged(CheckboxMenu menu, int check); } /** * ExamineViewerBehavior * * @version 1.0, 98/04/16 */ /** * Wakeup on mouse button presses, releases, and mouse movements and generate * transforms in an "examination style" that enables the user to rotate, * translation, and zoom an object as if it is held at arm's length. Such an * examination style is similar to the "Examine" navigation type used by VRML * browsers. * * The behavior maps mouse drags to different transforms depending upon the * mosue button held down: * * Button 1 (left) Horizontal movement --> Y-axis rotation Vertical movement --> * X-axis rotation * * Button 2 (middle) Horizontal movement --> nothing Vertical movement --> * Z-axis translation * * Button 3 (right) Horizontal movement --> X-axis translation Vertical movement * --> Y-axis translation * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * * No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3 * * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the examine rotation and translation * to be reset. */ // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Examine" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. class ExamineViewerBehavior extends ViewerBehavior { // Previous cursor location protected int previousX = 0; protected int previousY = 0; // Saved standard cursor protected Cursor savedCursor = null; /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. */ public ExamineViewerBehavior() { super(); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. * * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(Component parent) { super(parent); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. */ public ExamineViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Respond to a button1 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> positive Y-axis rotation // positive Y mouse delta --> positive X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = deltaY * XRotationFactor; double yRotationAngle = deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); currentTransform.mul(transform2, currentTransform); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button2 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive Y mouse delta --> positive Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaY = y - previousY; if (deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double zTranslationDistance = deltaY * ZTranslationFactor; // // Build transforms // translate.set(0.0, 0.0, zTranslationDistance); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button3 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to an elapsed frames event (assuming subclass has set up a wakeup * criterion for it). * * @param time * A WakeupOnElapsedFrames criterion to respond to. */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // Can't happen } } /* * * Copyright (c) 1998 David R. Nadeau * */ /** * WalkViewerBehavior is a utility class that creates a "walking style" * navigation symantic. * * The behavior wakes up on mouse button presses, releases, and mouse movements * and generates transforms in a "walk style" that enables the user to walk * through a scene, translating and turning about as if they are within the * scene. Such a walk style is similar to the "Walk" navigation type used by * VRML browsers. * <P> * The behavior maps mouse drags to different transforms depending upon the * mouse button held down: * <DL> * <DT>Button 1 (left) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> Z-axis translation * * <DT>Button 2 (middle) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> X-axis rotation * * <DT>Button 3 (right) * <DD>Horizontal movement --> X-axis translation * <DD>Vertical movement --> Y-axis translation * </DL> * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * <UL> * <LI>No modifiers = Button 1 * <LI>ALT = Button 2 * <LI>Meta = Button 3 * <LI>Control = Button 3 * </UL> * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the walk rotation and translation to * be reset. * <P> * While a mouse button is down, the behavior automatically changes the cursor * in a given parent AWT Component. If no parent Component is given, no cursor * changes are attempted. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class WalkViewerBehavior extends ViewerBehavior { // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Walk" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. // Previous and initial cursor locations protected int previousX = 0; protected int previousY = 0; protected int initialX = 0; protected int initialY = 0; // Deadzone size (delta from initial XY for which no // translate or rotate action is taken protected static final int DELTAX_DEADZONE = 10; protected static final int DELTAY_DEADZONE = 10; // Keep a set of wakeup criterion for animation-generated // event types. protected WakeupCriterion[] mouseAndAnimationEvents = null; protected WakeupOr mouseAndAnimationCriterion = null; protected WakeupOr savedMouseCriterion = null; // Saved standard cursor protected Cursor savedCursor = null; /** * Default Rotation and translation scaling factors for animated movements * (Button 1 press). */ public static final double DEFAULT_YROTATION_ANIMATION_FACTOR = 0.0002; public static final double DEFAULT_ZTRANSLATION_ANIMATION_FACTOR = 0.01; protected double YRotationAnimationFactor = DEFAULT_YROTATION_ANIMATION_FACTOR; protected double ZTranslationAnimationFactor = DEFAULT_ZTRANSLATION_ANIMATION_FACTOR; /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed during mouse actions if the parent frame is set * using the setParentComponent method. * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior() { super(); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed within the given AWT parent Component during mouse * drags. * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(Component parent) { super(parent); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed during mouse actions if the * parent frame is set using the setParentComponent method. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed within the given AWT parent * Component during mouse drags. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Initializes the behavior. */ public void initialize() { super.initialize(); savedMouseCriterion = mouseCriterion; // from parent class mouseAndAnimationEvents = new WakeupCriterion[4]; mouseAndAnimationEvents[0] = new WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED); mouseAndAnimationEvents[1] = new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED); mouseAndAnimationEvents[2] = new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED); mouseAndAnimationEvents[3] = new WakeupOnElapsedFrames(0); mouseAndAnimationCriterion = new WakeupOr(mouseAndAnimationEvents); // Don't use the above criterion until a button 1 down event } /** * Sets the Y rotation animation scaling factor for Y-axis rotations. This * scaling factor is used to control the speed of Y rotation when button 1 * is pressed and dragged. * * @param factor * the double Y rotation scaling factor */ public void setYRotationAnimationFactor(double factor) { YRotationAnimationFactor = factor; } /** * Gets the current Y animation rotation scaling factor for Y-axis * rotations. * * @return the double Y rotation scaling factor */ public double getYRotationAnimationFactor() { return YRotationAnimationFactor; } /** * Sets the Z animation translation scaling factor for Z-axis translations. * This scaling factor is used to control the speed of Z translation when * button 1 is pressed and dragged. * * @param factor * the double Z translation scaling factor */ public void setZTranslationAnimationFactor(double factor) { ZTranslationAnimationFactor = factor; } /** * Gets the current Z animation translation scaling factor for Z-axis * translations. * * @return the double Z translation scaling factor */ public double getZTranslationAnimationFactor() { return ZTranslationAnimationFactor; } /** * Responds to an elapsed frames event. Such an event is generated on every * frame while button 1 is held down. On each call, this method computes new * Y-axis rotation and Z-axis translation values and writes them to the * behavior's TransformGroup. The translation and rotation amounts are * computed based upon the distance between the current cursor location and * the cursor location when button 1 was pressed. As this distance * increases, the translation or rotation amount increases. * * @param time * the WakeupOnElapsedFrames criterion to respond to */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // // Time elapsed while button down: create a rotation and // a translation. // // Compute the delta in X and Y from the initial position to // the previous position. Multiply the delta times a scaling // factor to compute an offset to add to the current translation // and rotation. Use the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> positive Z-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // if (buttonPressed != BUTTON1) return; int deltaX = previousX - initialX; int deltaY = previousY - initialY; double yRotationAngle = -deltaX * YRotationAnimationFactor; double zTranslationDistance = deltaY * ZTranslationAnimationFactor; // // Build transforms // transform1.rotY(yRotationAngle); translate.set(0.0, 0.0, zTranslationDistance); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); // Translate back from the origin by the original translation // distance, plus the new walk translation... but force walk // to travel on a plane by ignoring the Y component of a // transformed translation vector. currentTransform.transform(translate); translate.x += matrix.m03; // add in existing X translation translate.y = matrix.m13; // use Y translation translate.z += matrix.m23; // add in existing Z translation currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); } /** * Responds to a button1 event (press, release, or drag). On a press, the * method adds a wakeup criterion to the behavior's set, callling for the * behavior to be awoken on each frame. On a button prelease, this criterion * is removed from the set. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position and change // the wakeup criterion to include elapsed time wakeups // so we can animate. previousX = x; previousY = y; initialX = x; initialY = y; // Swap criterion... parent class will not reschedule us mouseCriterion = mouseAndAnimationCriterion; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: restore original wakeup // criterion which only includes mouse activity, not // elapsed time mouseCriterion = savedMouseCriterion; // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } previousX = x; previousY = y; } /** * Responds to a button2 event (press, release, or drag). On a press, the * method records the initial cursor location. On a drag, the difference * between the current and previous cursor location provides a delta that * controls the amount by which to rotate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; initialX = x; initialY = y; // Change to a "rotate" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> negative X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = 0; if (Math.abs(y - initialY) > DELTAY_DEADZONE) { // Cursor has moved far enough vertically to consider // it intentional, so get it's delta. deltaY = y - previousY; } if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = -deltaY * XRotationFactor; double yRotationAngle = -deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform2, currentTransform); currentTransform.mul(transform1); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Responds to a button3 event (press, release, or drag). On a drag, the * difference between the current and previous cursor location provides a * delta that controls the amount by which to translate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } } // //CLASS //CheckboxMenu - build a menu of grouped checkboxes // //DESCRIPTION //The class creates a menu with one or more CheckboxMenuItem's //and monitors that menu. When a menu checkbox is picked, the //previous one is turned off (in radio-button style). Then, //a given listener's checkboxChanged method is called, passing it //the menu and the item checked. // class CheckboxMenu extends Menu implements ItemListener { // State protected CheckboxMenuItem[] checks = null; protected int current = 0; protected CheckboxMenuListener listener = null; // Construct public CheckboxMenu(String name, NameValue[] items, CheckboxMenuListener listen) { this(name, items, 0, listen); } public CheckboxMenu(String name, NameValue[] items, int cur, CheckboxMenuListener listen) { super(name); current = cur; listener = listen; if (items == null) return; checks = new CheckboxMenuItem[items.length]; for (int i = 0; i < items.length; i++) { checks[i] = new CheckboxMenuItem(items[i].name, false); checks[i].addItemListener(this); add(checks[i]); } checks[cur].setState(true); } // Handle checkbox changed events public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); for (int i = 0; i < checks.length; i++) { if (src == checks[i]) { // Update the checkboxes checks[current].setState(false); current = i; checks[current].setState(true); if (listener != null) listener.checkboxChanged(this, i); return; } } } // Methods to get and set state public int getCurrent() { return current; } public void setCurrent(int cur) { if (cur < 0 || cur >= checks.length) return; // ignore out of range choices if (checks == null) return; checks[current].setState(false); current = cur; checks[current].setState(true); } public CheckboxMenuItem getSelectedCheckbox() { if (checks == null) return null; return checks[current]; } public void setSelectedCheckbox(CheckboxMenuItem item) { if (checks == null) return; for (int i = 0; i < checks.length; i++) { if (item == checks[i]) { checks[i].setState(false); current = i; checks[i].setState(true); } } } } /** * ViewerBehavior * * @version 1.0, 98/04/16 */ /** * Wakeup on mouse button presses, releases, and mouse movements and generate * transforms for a transform group. Classes that extend this class impose * specific symantics, such as "Examine" or "Walk" viewing, similar to the * navigation types used by VRML browsers. * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * * No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3 * * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the viewer's rotation and translation * to be reset. */ // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific viewing symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. abstract class ViewerBehavior extends Behavior { // Keep track of the transform group who's transform we modify // during mouse motion. protected TransformGroup subjectTransformGroup = null; // Keep a set of wakeup criterion for different mouse-generated // event types. protected WakeupCriterion[] mouseEvents = null; protected WakeupOr mouseCriterion = null; // Track which button was last pressed protected static final int BUTTONNONE = -1; protected static final int BUTTON1 = 0; protected static final int BUTTON2 = 1; protected static final int BUTTON3 = 2; protected int buttonPressed = BUTTONNONE; // Keep a few Transform3Ds for use during event processing. This // avoids having to allocate new ones on each event. protected Transform3D currentTransform = new Transform3D(); protected Transform3D transform1 = new Transform3D(); protected Transform3D transform2 = new Transform3D(); protected Matrix4d matrix = new Matrix4d(); protected Vector3d origin = new Vector3d(0.0, 0.0, 0.0); protected Vector3d translate = new Vector3d(0.0, 0.0, 0.0); // Unusual X and Y delta limits. protected static final int UNUSUAL_XDELTA = 400; protected static final int UNUSUAL_YDELTA = 400; protected Component parentComponent = null; /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. */ public ViewerBehavior() { super(); } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. * * @param parent * The AWT Component that contains the area generating mouse * events. */ public ViewerBehavior(Component parent) { super(); parentComponent = parent; } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. */ public ViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. * @param parent * The AWT Component that contains the area generating mouse * events. */ public ViewerBehavior(TransformGroup transformGroup, Component parent) { super(); subjectTransformGroup = transformGroup; parentComponent = parent; } /** * Set the transform group modified by the viewer behavior. Setting the * transform group to null disables the behavior until the transform group * is again set to an existing group. * * @param transformGroup * The new transform group to be modified by the behavior. */ public void setTransformGroup(TransformGroup transformGroup) { subjectTransformGroup = transformGroup; } /** * Get the transform group modified by the viewer behavior. */ public TransformGroup getTransformGroup() { return subjectTransformGroup; } /** * Sets the parent component who's cursor will be changed during mouse * drags. If no component is given is given to the constructor, or set via * this method, no cursor changes will be done. * * @param parent * the AWT Component, such as a Frame, within which cursor * changes should take place during mouse drags */ public void setParentComponent(Component parent) { parentComponent = parent; } /* * Gets the parent frame within which the cursor changes during mouse drags. * * @return the AWT Component, such as a Frame, within which cursor changes * should take place during mouse drags. Returns null if no parent is set. */ public Component getParentComponent() { return parentComponent; } /** * Initialize the behavior. */ public void initialize() { // Wakeup when the mouse is dragged or when a mouse button // is pressed or released. mouseEvents = new WakeupCriterion[3]; mouseEvents[0] = new WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED); mouseEvents[1] = new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED); mouseEvents[2] = new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED); mouseCriterion = new WakeupOr(mouseEvents); wakeupOn(mouseCriterion); } /** * Process a new wakeup. Interpret mouse button presses, releases, and mouse * drags. * * @param criteria * The wakeup criteria causing the behavior wakeup. */ public void processStimulus(Enumeration criteria) { WakeupCriterion wakeup = null; AWTEvent[] event = null; int whichButton = BUTTONNONE; // Process all pending wakeups while (criteria.hasMoreElements()) { wakeup = (WakeupCriterion) criteria.nextElement(); if (wakeup instanceof WakeupOnAWTEvent) { event = ((WakeupOnAWTEvent) wakeup).getAWTEvent(); // Process all pending events for (int i = 0; i < event.length; i++) { if (event[i].getID() != MouseEvent.MOUSE_PRESSED && event[i].getID() != MouseEvent.MOUSE_RELEASED && event[i].getID() != MouseEvent.MOUSE_DRAGGED) // Ignore uninteresting mouse events continue; // // Regretably, Java event handling (or perhaps // underlying OS event handling) doesn't always // catch button bounces (redundant presses and // releases), or order events so that the last // drag event is delivered before a release. // This means we can get stray events that we // filter out here. // if (event[i].getID() == MouseEvent.MOUSE_PRESSED && buttonPressed != BUTTONNONE) // Ignore additional button presses until a release continue; if (event[i].getID() == MouseEvent.MOUSE_RELEASED && buttonPressed == BUTTONNONE) // Ignore additional button releases until a press continue; if (event[i].getID() == MouseEvent.MOUSE_DRAGGED && buttonPressed == BUTTONNONE) // Ignore drags until a press continue; MouseEvent mev = (MouseEvent) event[i]; int modifiers = mev.getModifiers(); // // Unfortunately, the underlying event handling // doesn't do a "grab" operation when a mouse button // is pressed. This means that once a button is // pressed, if another mouse button or a keyboard // modifier key is pressed, the delivered mouse event // will show that a different button is being held // down. For instance: // // Action Event // Button 1 press Button 1 press // Drag with button 1 down Button 1 drag // ALT press - // Drag with ALT & button 1 down Button 2 drag // Button 1 release Button 2 release // // The upshot is that we can get a button press // without a matching release, and the button // associated with a drag can change mid-drag. // // To fix this, we watch for an initial button // press, and thenceforth consider that button // to be the one held down, even if additional // buttons get pressed, and despite what is // reported in the event. Only when a button is // released, do we end such a grab. // if (buttonPressed == BUTTONNONE) { // No button is pressed yet, figure out which // button is down now and how to direct events if (((modifiers & InputEvent.BUTTON3_MASK) != 0) || (((modifiers & InputEvent.BUTTON1_MASK) != 0) && ((modifiers & InputEvent.CTRL_MASK) == InputEvent.CTRL_MASK))) { // Button 3 activity (META or CTRL down) whichButton = BUTTON3; } else if ((modifiers & InputEvent.BUTTON2_MASK) != 0) { // Button 2 activity (ALT down) whichButton = BUTTON2; } else { // Button 1 activity (no modifiers down) whichButton = BUTTON1; } // If the event is to press a button, then // record that that button is now down if (event[i].getID() == MouseEvent.MOUSE_PRESSED) buttonPressed = whichButton; } else { // Otherwise a button was pressed earlier and // hasn't been released yet. Assign all further // events to it, even if ALT, META, CTRL, or // another button has been pressed as well. whichButton = buttonPressed; } // Distribute the event switch (whichButton) { case BUTTON1: onButton1(mev); break; case BUTTON2: onButton2(mev); break; case BUTTON3: onButton3(mev); break; default: break; } // If the event is to release a button, then // record that that button is now up if (event[i].getID() == MouseEvent.MOUSE_RELEASED) buttonPressed = BUTTONNONE; } continue; } if (wakeup instanceof WakeupOnElapsedFrames) { onElapsedFrames((WakeupOnElapsedFrames) wakeup); continue; } } // Reschedule us for another wakeup wakeupOn(mouseCriterion); } /** * Default X and Y rotation factors, and XYZ translation factors. */ public static final double DEFAULT_XROTATION_FACTOR = 0.02; public static final double DEFAULT_YROTATION_FACTOR = 0.005; public static final double DEFAULT_XTRANSLATION_FACTOR = 0.02; public static final double DEFAULT_YTRANSLATION_FACTOR = 0.02; public static final double DEFAULT_ZTRANSLATION_FACTOR = 0.04; protected double XRotationFactor = DEFAULT_XROTATION_FACTOR; protected double YRotationFactor = DEFAULT_YROTATION_FACTOR; protected double XTranslationFactor = DEFAULT_XTRANSLATION_FACTOR; protected double YTranslationFactor = DEFAULT_YTRANSLATION_FACTOR; protected double ZTranslationFactor = DEFAULT_ZTRANSLATION_FACTOR; /** * Set the X rotation scaling factor for X-axis rotations. * * @param factor * The new scaling factor. */ public void setXRotationFactor(double factor) { XRotationFactor = factor; } /** * Get the current X rotation scaling factor for X-axis rotations. */ public double getXRotationFactor() { return XRotationFactor; } /** * Set the Y rotation scaling factor for Y-axis rotations. * * @param factor * The new scaling factor. */ public void setYRotationFactor(double factor) { YRotationFactor = factor; } /** * Get the current Y rotation scaling factor for Y-axis rotations. */ public double getYRotationFactor() { return YRotationFactor; } /** * Set the X translation scaling factor for X-axis translations. * * @param factor * The new scaling factor. */ public void setXTranslationFactor(double factor) { XTranslationFactor = factor; } /** * Get the current X translation scaling factor for X-axis translations. */ public double getXTranslationFactor() { return XTranslationFactor; } /** * Set the Y translation scaling factor for Y-axis translations. * * @param factor * The new scaling factor. */ public void setYTranslationFactor(double factor) { YTranslationFactor = factor; } /** * Get the current Y translation scaling factor for Y-axis translations. */ public double getYTranslationFactor() { return YTranslationFactor; } /** * Set the Z translation scaling factor for Z-axis translations. * * @param factor * The new scaling factor. */ public void setZTranslationFactor(double factor) { ZTranslationFactor = factor; } /** * Get the current Z translation scaling factor for Z-axis translations. */ public double getZTranslationFactor() { return ZTranslationFactor; } /** * Respond to a button1 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton1(MouseEvent mouseEvent); /** * Respond to a button2 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton2(MouseEvent mouseEvent); /** * Responed to a button3 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton3(MouseEvent mouseEvent); /** * Respond to an elapsed frames event (assuming subclass has set up a wakeup * criterion for it). * * @param time * A WakeupOnElapsedFrames criterion to respond to. */ public abstract void onElapsedFrames(WakeupOnElapsedFrames timeEvent); } // //CLASS //NameValue - create a handy name-value pair // //DESCRIPTION //It is frequently handy to have one or more name-value pairs //with which to store named colors, named positions, named textures, //and so forth. Several of the examples use this class. // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // class NameValue { public String name; public Object value; public NameValue(String n, Object v) { name = n; value = v; } }