Example usage for weka.classifiers Evaluation evaluateModel

List of usage examples for weka.classifiers Evaluation evaluateModel

Introduction

In this page you can find the example usage for weka.classifiers Evaluation evaluateModel.

Prototype

public static String evaluateModel(Classifier classifier, String[] options) throws Exception 

Source Link

Document

Evaluates a classifier with the options given in an array of strings.

Usage

From source file:kfst.classifier.WekaClassifier.java

License:Open Source License

/**
 * This method builds and evaluates the naiveBayes(NB) classifier.
 * The naiveBayes are used as the NB classifier implemented in the Weka
 * software./*  w w w.java  2  s  . c om*/
 *
 * @param pathTrainData the path of the train set
 * @param pathTestData the path of the test set
 * 
 * @return the classification accuracy
 */
public static double naiveBayes(String pathTrainData, String pathTestData) {
    double resultValue = 0;
    try {
        BufferedReader readerTrain = new BufferedReader(new FileReader(pathTrainData));
        Instances dataTrain = new Instances(readerTrain);
        readerTrain.close();
        dataTrain.setClassIndex(dataTrain.numAttributes() - 1);

        BufferedReader readerTest = new BufferedReader(new FileReader(pathTestData));
        Instances dataTest = new Instances(readerTest);
        readerTest.close();
        dataTest.setClassIndex(dataTest.numAttributes() - 1);

        NaiveBayes nb = new NaiveBayes();
        nb.buildClassifier(dataTrain);
        Evaluation eval = new Evaluation(dataTest);
        eval.evaluateModel(nb, dataTest);
        resultValue = 100 - (eval.errorRate() * 100);
    } catch (Exception ex) {
        Logger.getLogger(WekaClassifier.class.getName()).log(Level.SEVERE, null, ex);
    }
    return resultValue;
}

From source file:kfst.classifier.WekaClassifier.java

License:Open Source License

/**
 * This method builds and evaluates the decision tree(DT) classifier.
 * The j48 are used as the DT classifier implemented in the Weka software.
 *
 * @param pathTrainData the path of the train set
 * @param pathTestData the path of the test set
 * @param confidenceValue The confidence factor used for pruning
 * @param minNumSampleInLeaf The minimum number of instances per leaf
 * //from  w  w  w  .ja  va  2s . co  m
 * @return the classification accuracy
 */
public static double dTree(String pathTrainData, String pathTestData, double confidenceValue,
        int minNumSampleInLeaf) {
    double resultValue = 0;
    try {
        BufferedReader readerTrain = new BufferedReader(new FileReader(pathTrainData));
        Instances dataTrain = new Instances(readerTrain);
        readerTrain.close();
        dataTrain.setClassIndex(dataTrain.numAttributes() - 1);

        BufferedReader readerTest = new BufferedReader(new FileReader(pathTestData));
        Instances dataTest = new Instances(readerTest);
        readerTest.close();
        dataTest.setClassIndex(dataTest.numAttributes() - 1);

        J48 decisionTree = new J48();
        decisionTree.setConfidenceFactor((float) confidenceValue);
        decisionTree.setMinNumObj(minNumSampleInLeaf);
        decisionTree.buildClassifier(dataTrain);
        Evaluation eval = new Evaluation(dataTest);
        eval.evaluateModel(decisionTree, dataTest);
        resultValue = 100 - (eval.errorRate() * 100);
    } catch (Exception ex) {
        Logger.getLogger(WekaClassifier.class.getName()).log(Level.SEVERE, null, ex);
    }
    return resultValue;
}

From source file:knnclassifier.Main.java

public static void main(String[] args) throws Exception {

    DataSource source = new DataSource(file);
    Instances dataSet = source.getDataSet();

    //Set up data
    dataSet.setClassIndex(dataSet.numAttributes() - 1);
    dataSet.randomize(new Random());

    int trainingSize = (int) Math.round(dataSet.numInstances() * .7);
    int testSize = dataSet.numInstances() - trainingSize;

    Instances training = new Instances(dataSet, 0, trainingSize);

    Instances test = new Instances(dataSet, trainingSize, testSize);

    Standardize standardizedData = new Standardize();
    standardizedData.setInputFormat(training);

    Instances newTest = Filter.useFilter(test, standardizedData);
    Instances newTraining = Filter.useFilter(training, standardizedData);

    KNNClassifier knn = new KNNClassifier();
    knn.buildClassifier(newTraining);/*w  w w.  jav a 2 s.  c  o m*/

    Evaluation eval = new Evaluation(newTraining);
    eval.evaluateModel(knn, newTest);

    System.out.println(eval.toSummaryString("\nResults\n======\n", false));
}

From source file:lascer.WekaClassifier.java

License:Open Source License

/**
 * Evaluates the classifier.//w w w  . ja va2s .  co m
 *
 * @param args  an array with the options for the evaluation.
 */
public static void main(String[] args) {

    try {
        System.out.println(Evaluation.evaluateModel(new WekaClassifier(), args));
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:lector.Analizador.java

public static void clasificador() {

    BufferedReader reader1;/*from  w w w .  j  a  v a 2s  . c  o  m*/
    BufferedReader reader2;
    try {
        reader1 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/"
                + "proyecto/compartida/DataSetAnalisisSentimientos.arff"));

        reader2 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/"
                + "proyecto/compartida/DataSetAnalisisSentimientos_inc.arff"));
        Instances train = new Instances(reader1);
        train.setClassIndex(train.numAttributes() - 1);
        System.out.println(train.classIndex() + " " + train.numAttributes());

        Instances test = new Instances(reader2);
        test.setClassIndex(train.numAttributes() - 1);
        System.out.println(test.classIndex() + " " + test.numAttributes());

        NaiveBayes model = new NaiveBayes();
        model.buildClassifier(train);

        //classify
        Instances labeled = new Instances(test);

        for (int i = 0; i < test.numInstances(); i++) {
            double clsLabel = model.classifyInstance(test.instance(i));
            labeled.instance(i).setClassValue(clsLabel);
        }

        // https://youtu.be/JY_x5zKTfyo?list=PLJbE6j2EG1pZnBhOg3_Rb63WLCprtyJag
        Evaluation eval_train = new Evaluation(test);
        eval_train.evaluateModel(model, test);

        reader1.close();
        reader2.close();

        //System.out.println(eval_train.toSummaryString("\nResults\n======\n", false));
        String[] options = new String[4];
        options[0] = "-t"; //name of training file
        options[1] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/"
                + "compartida/DataSetAnalisisSentimientos.arff";
        options[2] = "-T";
        options[3] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/"
                + "compartida/DataSetAnalisisSentimientos_inc.arff";
        System.out.println(Evaluation.evaluateModel(model, options));

        try ( // print classification results to file
                BufferedWriter writer = new BufferedWriter(
                        new FileWriter("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/"
                                + "proyecto/compartida/DataSetAnalisisSentimientos_labeled.arff"))) {
            writer.write(labeled.toString());
        }

    } catch (Exception e) {
    }
}

From source file:lu.lippmann.cdb.datasetview.tabs.RegressionTreeTabView.java

License:Open Source License

/**
 * {@inheritDoc}//w  ww. j  av  a 2 s. com
 */
@SuppressWarnings("unchecked")
@Override
public void update0(final Instances dataSet) throws Exception {
    this.panel.removeAll();

    //final Object[] attrNames=WekaDataStatsUtil.getNumericAttributesNames(dataSet).toArray();
    final Object[] attrNames = WekaDataStatsUtil.getAttributeNames(dataSet).toArray();
    final JComboBox xCombo = new JComboBox(attrNames);
    xCombo.setBorder(new TitledBorder("Attribute to evaluate"));

    final JXPanel comboPanel = new JXPanel();
    comboPanel.setLayout(new GridLayout(1, 2));
    comboPanel.add(xCombo);
    final JXButton jxb = new JXButton("Compute");
    comboPanel.add(jxb);
    this.panel.add(comboPanel, BorderLayout.NORTH);

    jxb.addActionListener(new ActionListener() {
        @Override
        public void actionPerformed(ActionEvent e) {
            try {
                if (gv != null)
                    panel.remove((Component) gv);

                dataSet.setClassIndex(xCombo.getSelectedIndex());

                final REPTree rt = new REPTree();
                rt.setNoPruning(true);
                //rt.setMaxDepth(3);
                rt.buildClassifier(dataSet);

                /*final M5P rt=new M5P();
                rt.buildClassifier(dataSet);*/

                final Evaluation eval = new Evaluation(dataSet);
                double[] d = eval.evaluateModel(rt, dataSet);
                System.out.println("PREDICTED -> " + FormatterUtil.buildStringFromArrayOfDoubles(d));
                System.out.println(eval.errorRate());
                System.out.println(eval.sizeOfPredictedRegions());
                System.out.println(eval.toSummaryString("", true));

                final GraphWithOperations gwo = GraphUtil
                        .buildGraphWithOperationsFromWekaRegressionString(rt.graph());
                final DecisionTree dt = new DecisionTree(gwo, eval.errorRate());

                gv = DecisionTreeToGraphViewHelper.buildGraphView(dt, eventPublisher, commandDispatcher);
                gv.addMetaInfo("Size=" + dt.getSize(), "");
                gv.addMetaInfo("Depth=" + dt.getDepth(), "");

                gv.addMetaInfo("MAE=" + FormatterUtil.DECIMAL_FORMAT.format(eval.meanAbsoluteError()) + "", "");
                gv.addMetaInfo("RMSE=" + FormatterUtil.DECIMAL_FORMAT.format(eval.rootMeanSquaredError()) + "",
                        "");

                final JCheckBox toggleDecisionTreeDetails = new JCheckBox("Toggle details");
                toggleDecisionTreeDetails.addActionListener(new ActionListener() {
                    @Override
                    public void actionPerformed(ActionEvent e) {
                        if (!tweakedGraph) {
                            final Object[] mapRep = WekaDataStatsUtil
                                    .buildNodeAndEdgeRepartitionMap(dt.getGraphWithOperations(), dataSet);
                            gv.updateVertexShapeTransformer((Map<CNode, Map<Object, Integer>>) mapRep[0]);
                            gv.updateEdgeShapeRenderer((Map<CEdge, Float>) mapRep[1]);
                        } else {
                            gv.resetVertexAndEdgeShape();
                        }
                        tweakedGraph = !tweakedGraph;
                    }
                });
                gv.addMetaInfoComponent(toggleDecisionTreeDetails);

                /*final JButton openInEditorButton = new JButton("Open in editor");
                openInEditorButton.addActionListener(new ActionListener() {
                   @Override
                   public void actionPerformed(ActionEvent e) {
                       GraphUtil.importDecisionTreeInEditor(dtFactory, dataSet, applicationContext, eventPublisher, commandDispatcher);
                   }
                });
                this.gv.addMetaInfoComponent(openInEditorButton);*/

                final JButton showTextButton = new JButton("In text");
                showTextButton.addActionListener(new ActionListener() {
                    @Override
                    public void actionPerformed(ActionEvent e) {
                        JOptionPane.showMessageDialog(null, graphDsl.getDslString(dt.getGraphWithOperations()));
                    }
                });
                gv.addMetaInfoComponent(showTextButton);

                panel.add(gv.asComponent(), BorderLayout.CENTER);
            } catch (Exception e1) {
                e1.printStackTrace();
                panel.add(new JXLabel("Error during computation: " + e1.getMessage()), BorderLayout.CENTER);
            }

        }
    });
}

From source file:lu.lippmann.cdb.dt.ModelTreeFactory.java

License:Open Source License

/**
 * Main method./*from  ww w. ja  va  2 s  .c o  m*/
 * @param args command line arguments
 */
public static void main(final String[] args) {
    try {
        //final String f="./samples/csv/uci/winequality-red-simplified.csv";
        final String f = "./samples/csv/uci/winequality-white.csv";
        //final String f="./samples/arff/UCI/crimepredict.arff";
        final Instances dataSet = WekaDataAccessUtil.loadInstancesFromARFFOrCSVFile(new File(f));
        System.out.println(dataSet.classAttribute().isNumeric());

        final M5P rt = new M5P();
        //rt.setUnpruned(true);
        rt.setMinNumInstances(1000);
        rt.buildClassifier(dataSet);

        System.out.println(rt);

        System.out.println(rt.graph());

        final GraphWithOperations gwo = GraphUtil.buildGraphWithOperationsFromWekaRegressionString(rt.graph());
        System.out.println(gwo);
        System.out.println(new ASCIIGraphDsl().getDslString(gwo));

        final Evaluation eval = new Evaluation(dataSet);

        /*Field privateStringField = Evaluation.class.getDeclaredField("m_CoverageStatisticsAvailable");
        privateStringField.setAccessible(true);
        //privateStringField.get
        boolean fieldValue = privateStringField.getBoolean(eval);
        System.out.println("fieldValue = " + fieldValue);*/

        double[] d = eval.evaluateModel(rt, dataSet);
        System.out.println("PREDICTED -> " + FormatterUtil.buildStringFromArrayOfDoubles(d));

        System.out.println(eval.errorRate());
        System.out.println(eval.sizeOfPredictedRegions());

        System.out.println(eval.toSummaryString("", true));

        System.out.println(new DecisionTree(gwo, eval.errorRate()));
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:lu.lippmann.cdb.dt.RegressionTreeFactory.java

License:Open Source License

/**
 * Main method./*from  ww w  .j a  v  a 2  s  .c  o  m*/
 * @param args command line arguments
 */
public static void main(final String[] args) {
    try {
        final String f = "./samples/csv/uci/winequality-red.csv";
        //final String f="./samples/arff/UCI/crimepredict.arff";
        final Instances dataSet = WekaDataAccessUtil.loadInstancesFromARFFOrCSVFile(new File(f));
        System.out.println(dataSet.classAttribute().isNumeric());

        final REPTree rt = new REPTree();
        rt.setMaxDepth(3);
        rt.buildClassifier(dataSet);

        System.out.println(rt);

        //System.out.println(rt.graph());

        final GraphWithOperations gwo = GraphUtil.buildGraphWithOperationsFromWekaRegressionString(rt.graph());
        System.out.println(gwo);
        System.out.println(new ASCIIGraphDsl().getDslString(gwo));

        final Evaluation eval = new Evaluation(dataSet);

        /*Field privateStringField = Evaluation.class.getDeclaredField("m_CoverageStatisticsAvailable");
        privateStringField.setAccessible(true);
        //privateStringField.get
        boolean fieldValue = privateStringField.getBoolean(eval);
        System.out.println("fieldValue = " + fieldValue);*/

        double[] d = eval.evaluateModel(rt, dataSet);
        System.out.println("PREDICTED -> " + FormatterUtil.buildStringFromArrayOfDoubles(d));

        System.out.println(eval.errorRate());
        System.out.println(eval.sizeOfPredictedRegions());

        System.out.println(eval.toSummaryString("", true));

        /*final String f2="./samples/csv/salary.csv";
        final Instances dataSet2=WekaDataAccessUtil.loadInstancesFromARFFOrCSVFile(new File(f2));
                
        final J48 j48=new J48();
        j48.buildClassifier(dataSet2);
        System.out.println(j48.graph());
        final GraphWithOperations gwo2=GraphUtil.buildGraphWithOperationsFromWekaString(j48.graph(),false);
        System.out.println(gwo2);*/

        System.out.println(new DecisionTree(gwo, eval.errorRate()));
    } catch (Exception e) {
        e.printStackTrace();
    }
}

From source file:machinelearningproject.MachineLearningProject.java

/**
 * @param args the command line arguments
 *//*from  w w w  .  j a v  a  2 s .c o m*/
public static void main(String[] args) throws Exception {
    // TODO code application logic here
    DataSource source = new DataSource("D:\\spambase.arff");
    //        DataSource source = new DataSource("D:\\weather-nominal.arff");
    Instances instances = source.getDataSet();
    int numAttr = instances.numAttributes();
    instances.setClassIndex(instances.numAttributes() - 1);

    int runs = 5;
    int seed = 15;
    for (int i = 0; i < runs; i++) {
        //randomize data
        seed = seed + 1; // the seed for randomizing the data
        Random rand = new Random(seed); // create seeded number generator
        Instances randData = new Instances(instances); // create copy of original data
        Collections.shuffle(randData);

        Evaluation evalDTree = new Evaluation(randData);
        Evaluation evalRF = new Evaluation(randData);
        Evaluation evalSVM = new Evaluation(randData);

        int folds = 10;
        for (int n = 0; n < folds; n++) {
            Instances train = randData.trainCV(folds, n, rand);
            Instances test = randData.testCV(folds, n);
            //instantiate classifiers
            DecisionTree dtree = new DecisionTree();
            RandomForest rf = new RandomForest(100);
            SMO svm = new SMO();
            RBFKernel rbfKernel = new RBFKernel();
            double gamma = 0.70;
            rbfKernel.setGamma(gamma);

            dtree.buildClassifier(train);
            rf.buildClassifier(train);
            svm.buildClassifier(train);

            evalDTree.evaluateModel(dtree, test);
            evalRF.evaluateModel(rf, test);
            evalSVM.evaluateModel(svm, test);
        }
        System.out.println("=== Decision Tree Evaluation ===");
        System.out.println(evalDTree.toSummaryString());
        System.out.println(evalDTree.toClassDetailsString());
        System.out.println(evalDTree.toMatrixString());

        System.out.println("=== Random Forest Evaluation ===");
        System.out.println(evalRF.toSummaryString());
        System.out.println(evalRF.toClassDetailsString());
        System.out.println(evalRF.toMatrixString());

        System.out.println("=== SVM Evaluation ===");
        System.out.println(evalSVM.toSummaryString());
        System.out.println(evalSVM.toClassDetailsString());
        System.out.println(evalSVM.toMatrixString());
    }
}

From source file:main.mFFNN.java

public static void main(String[] args) throws Exception {
    mFFNN m = new mFFNN();
    BufferedReader breader = null;
    breader = new BufferedReader(new FileReader("src\\main\\iris.arff"));
    Instances fileTrain = new Instances(breader);
    fileTrain.setClassIndex(fileTrain.numAttributes() - 1);
    System.out.println(fileTrain);
    breader.close();//from  w w w  .  j ava2 s.  co m
    System.out.println("mFFNN!!!\n\n");
    FeedForwardNeuralNetwork FFNN = new FeedForwardNeuralNetwork();

    Evaluation eval = new Evaluation(fileTrain);
    FFNN.buildClassifier(fileTrain);

    eval.evaluateModel(FFNN, fileTrain);

    //OUTPUT
    Scanner scan = new Scanner(System.in);
    System.out.println(eval.toSummaryString("=== Stratified cross-validation ===\n" + "=== Summary ===", true));
    System.out.println(eval.toClassDetailsString("=== Detailed Accuracy By Class ==="));
    System.out.println(eval.toMatrixString("===Confusion matrix==="));
    System.out.println(eval.fMeasure(1) + " " + eval.recall(1));
    System.out.println("\nDo you want to save this model(1/0)? ");
    FFNN.distributionForInstance(fileTrain.get(0));
    /* int c = scan.nextInt();
    if (c == 1 ){
     System.out.print("Please enter your file name (*.model) : ");
     String infile = scan.next();
     m.saveModel(FFNN,infile);
    }
    else {
    System.out.print("Model not saved.");
    } */
}