Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package main; import FeedForwardNeuralNetwork.FeedForwardNeuralNetwork; import java.io.BufferedReader; import java.io.FileOutputStream; import java.io.FileReader; import java.io.ObjectOutputStream; import java.util.Scanner; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.core.Instances; import weka.filters.Filter; import weka.filters.supervised.attribute.Discretize; /** * * @author user-ari */ public class mFFNN { void saveModel(Classifier C, String namaFile) throws Exception { //SAVE // serialize model weka.core.SerializationHelper.write(namaFile, C); } public static void main(String[] args) throws Exception { mFFNN m = new mFFNN(); BufferedReader breader = null; breader = new BufferedReader(new FileReader("src\\main\\iris.arff")); Instances fileTrain = new Instances(breader); fileTrain.setClassIndex(fileTrain.numAttributes() - 1); System.out.println(fileTrain); breader.close(); System.out.println("mFFNN!!!\n\n"); FeedForwardNeuralNetwork FFNN = new FeedForwardNeuralNetwork(); Evaluation eval = new Evaluation(fileTrain); FFNN.buildClassifier(fileTrain); eval.evaluateModel(FFNN, fileTrain); //OUTPUT Scanner scan = new Scanner(System.in); System.out.println(eval.toSummaryString("=== Stratified cross-validation ===\n" + "=== Summary ===", true)); System.out.println(eval.toClassDetailsString("=== Detailed Accuracy By Class ===")); System.out.println(eval.toMatrixString("===Confusion matrix===")); System.out.println(eval.fMeasure(1) + " " + eval.recall(1)); System.out.println("\nDo you want to save this model(1/0)? "); FFNN.distributionForInstance(fileTrain.get(0)); /* int c = scan.nextInt(); if (c == 1 ){ System.out.print("Please enter your file name (*.model) : "); String infile = scan.next(); m.saveModel(FFNN,infile); } else { System.out.print("Model not saved."); } */ } }