List of usage examples for weka.classifiers Evaluation evaluateModel
public static String evaluateModel(Classifier classifier, String[] options) throws Exception
From source file:Example.java
License:Open Source License
public static void main(String[] argv) throws Exception { if (argv.length < 1) { System.out.println("Usage: Example <arff file>"); System.exit(1);//w w w .j av a2s. com } String dataFile = argv[0]; // input arff file WLSVM lib = new WLSVM(); String[] ops = { new String("-t"), dataFile, new String("-x"), // 5 folds CV new String("5"), new String("-i"), // //--------------- new String("-S"), // WLSVM options new String("0"), // Classification problem new String("-K"), // RBF kernel new String("2"), new String("-G"), // gamma new String("1"), new String("-C"), // C new String("7"), new String("-Z"), // normalize input data new String("1"), new String("-M"), // cache size in MB new String("100") }; System.out.println(Evaluation.evaluateModel(lib, ops)); }
From source file:CrossValidationMultipleRuns.java
License:Open Source License
/** * Performs the cross-validation. See Javadoc of class for information * on command-line parameters.//from ww w .jav a 2 s . c o m * * @param args the command-line parameters * @throws Exception if something goes wrong */ public static void main(String[] args) throws Exception { // loads data and set class index Instances data = DataSource.read(Utils.getOption("t", args)); String clsIndex = Utils.getOption("c", args); if (clsIndex.length() == 0) clsIndex = "last"; if (clsIndex.equals("first")) data.setClassIndex(0); else if (clsIndex.equals("last")) data.setClassIndex(data.numAttributes() - 1); else data.setClassIndex(Integer.parseInt(clsIndex) - 1); // classifier String[] tmpOptions; String classname; tmpOptions = Utils.splitOptions(Utils.getOption("W", args)); classname = tmpOptions[0]; tmpOptions[0] = ""; Classifier cls = (Classifier) Utils.forName(Classifier.class, classname, tmpOptions); // other options int runs = Integer.parseInt(Utils.getOption("r", args)); int folds = Integer.parseInt(Utils.getOption("x", args)); // perform cross-validation for (int i = 0; i < runs; i++) { // randomize data int seed = i + 1; Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); //if (randData.classAttribute().isNominal()) // randData.stratify(folds); Evaluation eval = new Evaluation(randData); StringBuilder optionsString = new StringBuilder(); for (String s : cls.getOptions()) { optionsString.append(s); optionsString.append(" "); } // output evaluation System.out.println(); System.out.println("=== Setup run " + (i + 1) + " ==="); System.out.println("Classifier: " + optionsString.toString()); System.out.println("Dataset: " + data.relationName()); System.out.println("Folds: " + folds); System.out.println("Seed: " + seed); System.out.println(); for (int n = 0; n < folds; n++) { Instances train = randData.trainCV(folds, n); Instances test = randData.testCV(folds, n); // build and evaluate classifier Classifier clsCopy = Classifier.makeCopy(cls); clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); System.out.println(eval.toClassDetailsString()); } System.out.println( eval.toSummaryString("=== " + folds + "-fold Cross-validation run " + (i + 1) + " ===", false)); } }
From source file:homemadeWEKA.java
public static void reevaluateModel(Instances data_train, Instances data_test, Classifier cls) throws Exception { Evaluation eval = new Evaluation(data_train); eval.evaluateModel(cls, data_test); System.out.println(eval.toSummaryString("\nResults\n\n", false)); }
From source file:ClassificationClass.java
public Evaluation cls_svm(Instances data) { Evaluation eval = null; try {/*from w ww. jav a 2 s. c o m*/ Classifier classifier; data.setClassIndex(data.numAttributes() - 1); classifier = new SMO(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; }
From source file:ClassificationClass.java
public Evaluation cls_knn(Instances data) { Evaluation eval = null; try {//from w ww.ja va 2 s. c om Classifier classifier; data.setClassIndex(data.numAttributes() - 1); classifier = new IBk(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.weightedFMeasure()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; }
From source file:ClassificationClass.java
public Evaluation cls_naivebayes(Instances data) { Evaluation eval = null; try {/* w w w . j av a 2s.c om*/ Classifier classifier; PreparingSteps preparingSteps = new PreparingSteps(); data.setClassIndex(data.numAttributes() - 1); classifier = new NaiveBayes(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.toSummaryString()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; }
From source file:ClassificationClass.java
public Evaluation cls_c4_5(Instances data) { Evaluation eval = null; try {//w w w . j a v a 2 s . c o m Classifier classifier; PreparingSteps preparingSteps = new PreparingSteps(); data.setClassIndex(data.numAttributes() - 1); classifier = new J48(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.toSummaryString()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; }
From source file:Pair.java
License:Open Source License
private double getTestError() throws Exception { Evaluation evaluation; evaluation = new Evaluation(testData); evaluation.evaluateModel(this, testData); return evaluation.errorRate(); }
From source file:Pair.java
License:Open Source License
/** * Main method for testing this class.//from ww w . j a va 2 s. c om * * @param argv the options */ public static void main(String[] argv) { try { System.out.println(Evaluation.evaluateModel(new TwoStageTrAdaBoostR2(), argv)); } catch (Exception e) { System.out.println(e.getMessage()); } }
From source file:CopiaSeg3.java
public static Evaluation simpleClassify(Classifier model, Instances trainingSet, Instances testingSet) throws Exception { Evaluation validation = new Evaluation(trainingSet); model.buildClassifier(trainingSet);//from ww w. j a v a 2 s . c o m validation.evaluateModel(model, testingSet); // Imprime el resultado de Weka explorer: String strSummary = validation.toSummaryString(); System.out.println(strSummary); return validation; }