Example usage for weka.classifiers Evaluation evaluateModel

List of usage examples for weka.classifiers Evaluation evaluateModel

Introduction

In this page you can find the example usage for weka.classifiers Evaluation evaluateModel.

Prototype

public static String evaluateModel(Classifier classifier, String[] options) throws Exception 

Source Link

Document

Evaluates a classifier with the options given in an array of strings.

Usage

From source file:com.sliit.rules.RuleContainer.java

public String predictionResult(String filePath) throws Exception {

    File testPath = new File(filePath);
    CSVLoader loader = new CSVLoader();
    loader.setSource(testPath);/*from   w w  w .j av a 2s .  c  o m*/
    Instances testInstances = loader.getDataSet();
    testInstances.setClassIndex(testInstances.numAttributes() - 1);
    Evaluation eval = new Evaluation(testInstances);
    eval.evaluateModel(ruleMoldel, testInstances);
    ArrayList<Prediction> predictions = eval.predictions();
    int predictedVal = (int) predictions.get(0).predicted();
    String cdetails = instances.classAttribute().value(predictedVal);
    return cdetails;
}

From source file:controller.BothClassificationsServlet.java

@Override
protected void doPost(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    request.setCharacterEncoding("UTF-8");
    String dir = "/data/";
    String path = getServletContext().getRealPath(dir);

    String action = request.getParameter("action");

    switch (action) {
    case "create": {
        String fileName = request.getParameter("file");

        String aux = fileName.substring(0, fileName.indexOf("."));
        String pathInput = path + "/" + request.getParameter("file");
        String pathTrainingOutput = path + "/" + aux + "-training-arff.txt";
        String pathTestOutput = path + "/" + aux + "-test-arff.txt";
        String pathBothClassifications = path + "/" + aux + "-bothClassifications.txt";

        String name = request.getParameter("name");
        int range = Integer.parseInt(request.getParameter("range"));

        int size = Integer.parseInt(request.getParameter("counter"));
        String[] columns = new String[size];
        String[] types = new String[size];
        int[] positions = new int[size];
        int counter = 0;
        for (int i = 0; i < size; i++) {
            if (request.getParameter("column-" + (i + 1)) != null) {
                columns[counter] = request.getParameter("column-" + (i + 1));
                types[counter] = request.getParameter("type-" + (i + 1));
                positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1)));
                counter++;//  ww w.j a  v a2 s . c  o  m
            }
        }

        FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types,
                positions, counter, range);
        try {
            J48 j48 = new J48();

            BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTraining = new Instances(readerTraining);
            instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1);

            j48.buildClassifier(instancesTraining);

            BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput));
            //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTest = new Instances(readerTest);
            instancesTest.setClassIndex(instancesTest.numAttributes() - 1);

            int correctsDecisionTree = 0;

            for (int i = 0; i < instancesTest.size(); i++) {
                Instance instance = instancesTest.get(i);
                double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1));
                double classification = j48.classifyInstance(instance);

                if (correctValue == classification) {
                    correctsDecisionTree++;
                }
            }

            Evaluation eval = new Evaluation(instancesTraining);
            eval.evaluateModel(j48, instancesTest);

            PrintWriter writer = new PrintWriter(
                    new BufferedWriter(new FileWriter(pathBothClassifications, false)));

            writer.println("?rvore de Deciso\n\n");

            writer.println(j48.toString());

            writer.println("");
            writer.println("");
            writer.println("Results");
            writer.println(eval.toSummaryString());

            NaiveBayes naiveBayes = new NaiveBayes();

            naiveBayes.buildClassifier(instancesTraining);

            eval = new Evaluation(instancesTraining);
            eval.evaluateModel(naiveBayes, instancesTest);

            int correctsNaiveBayes = 0;

            for (int i = 0; i < instancesTest.size(); i++) {
                Instance instance = instancesTest.get(i);
                double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1));
                double classification = naiveBayes.classifyInstance(instance);

                if (correctValue == classification) {
                    correctsNaiveBayes++;
                }
            }

            writer.println("Naive Bayes\n\n");

            writer.println(naiveBayes.toString());

            writer.println("");
            writer.println("");
            writer.println("Results");
            writer.println(eval.toSummaryString());

            writer.close();

            response.sendRedirect("BothClassifications?action=view&correctsDecisionTree=" + correctsDecisionTree
                    + "&correctsNaiveBayes=" + correctsNaiveBayes + "&totalTest=" + instancesTest.size()
                    + "&totalTrainig=" + instancesTraining.size() + "&range=" + range + "&fileName=" + aux
                    + "-bothClassifications.txt");
        } catch (Exception e) {
            System.out.println(e.getMessage());
            response.sendRedirect("Navigation?action=decisionTree");
        }

        break;
    }
    default:
        response.sendError(404);
    }
}

From source file:controller.DecisionTreeServlet.java

@Override
protected void doPost(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    request.setCharacterEncoding("UTF-8");
    String dir = "/data/";
    String path = getServletContext().getRealPath(dir);

    String action = request.getParameter("action");

    switch (action) {
    case "create": {
        String fileName = request.getParameter("file");

        String aux = fileName.substring(0, fileName.indexOf("."));
        String pathInput = path + "/" + request.getParameter("file");
        String pathTrainingOutput = path + "/" + aux + "-training-arff.txt";
        String pathTestOutput = path + "/" + aux + "-test-arff.txt";
        String pathDecisionTree = path + "/" + aux + "-decisionTree.txt";

        String name = request.getParameter("name");
        int range = Integer.parseInt(request.getParameter("range"));

        int size = Integer.parseInt(request.getParameter("counter"));
        String[] columns = new String[size];
        String[] types = new String[size];
        int[] positions = new int[size];
        int counter = 0;
        for (int i = 0; i < size; i++) {
            if (request.getParameter("column-" + (i + 1)) != null) {
                columns[counter] = request.getParameter("column-" + (i + 1));
                types[counter] = request.getParameter("type-" + (i + 1));
                positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1)));
                counter++;/*w  w w.j a v  a2 s.  com*/
            }
        }

        FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types,
                positions, counter, range);
        try {
            J48 j48 = new J48();

            BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTraining = new Instances(readerTraining);
            instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1);

            j48.buildClassifier(instancesTraining);

            BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput));
            //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTest = new Instances(readerTest);
            instancesTest.setClassIndex(instancesTest.numAttributes() - 1);

            int corrects = 0;
            int truePositive = 0;
            int trueNegative = 0;
            int falsePositive = 0;
            int falseNegative = 0;

            for (int i = 0; i < instancesTest.size(); i++) {
                Instance instance = instancesTest.get(i);
                double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1));
                double classification = j48.classifyInstance(instance);

                if (correctValue == classification) {
                    corrects++;
                }
                if (correctValue == 1 && classification == 1) {
                    truePositive++;
                }
                if (correctValue == 1 && classification == 0) {
                    falseNegative++;
                }
                if (correctValue == 0 && classification == 1) {
                    falsePositive++;
                }
                if (correctValue == 0 && classification == 0) {
                    trueNegative++;
                }
            }

            Evaluation eval = new Evaluation(instancesTraining);
            eval.evaluateModel(j48, instancesTest);

            PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathDecisionTree, false)));

            writer.println(j48.toString());

            writer.println("");
            writer.println("");
            writer.println("Results");
            writer.println(eval.toSummaryString());

            writer.close();

            response.sendRedirect("DecisionTree?action=view&corrects=" + corrects + "&totalTest="
                    + instancesTest.size() + "&totalTrainig=" + instancesTraining.size() + "&truePositive="
                    + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive
                    + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-decisionTree.txt");
        } catch (Exception e) {
            System.out.println(e.getMessage());
            response.sendRedirect("Navigation?action=decisionTree");
        }

        break;
    }
    default:
        response.sendError(404);
    }
}

From source file:controller.NaiveBayesServlet.java

@Override
protected void doPost(HttpServletRequest request, HttpServletResponse response)
        throws ServletException, IOException {
    request.setCharacterEncoding("UTF-8");
    String dir = "/data/";
    String path = getServletContext().getRealPath(dir);

    String action = request.getParameter("action");

    switch (action) {
    case "create": {
        String fileName = request.getParameter("file");

        String aux = fileName.substring(0, fileName.indexOf("."));
        String pathInput = path + "/" + request.getParameter("file");
        String pathTrainingOutput = path + "/" + aux + "-training-arff.txt";
        String pathTestOutput = path + "/" + aux + "-test-arff.txt";
        String pathNaivebayes = path + "/" + aux + "-naiveBayes.txt";

        String name = request.getParameter("name");
        int range = Integer.parseInt(request.getParameter("range"));

        int size = Integer.parseInt(request.getParameter("counter"));
        String[] columns = new String[size];
        String[] types = new String[size];
        int[] positions = new int[size];
        int counter = 0;

        for (int i = 0; i < size; i++) {
            if (request.getParameter("column-" + (i + 1)) != null) {
                columns[counter] = request.getParameter("column-" + (i + 1));
                types[counter] = request.getParameter("type-" + (i + 1));
                positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1)));
                counter++;/*  www .ja v  a 2  s . c o  m*/
            }
        }

        FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types,
                positions, counter, range);

        try {
            NaiveBayes naiveBayes = new NaiveBayes();

            BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTraining = new Instances(readerTraining);
            instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1);

            naiveBayes.buildClassifier(instancesTraining);

            BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput));
            //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput));
            Instances instancesTest = new Instances(readerTest);
            instancesTest.setClassIndex(instancesTest.numAttributes() - 1);

            Evaluation eval = new Evaluation(instancesTraining);
            eval.evaluateModel(naiveBayes, instancesTest);

            int corrects = 0;
            int truePositive = 0;
            int trueNegative = 0;
            int falsePositive = 0;
            int falseNegative = 0;

            for (int i = 0; i < instancesTest.size(); i++) {
                Instance instance = instancesTest.get(i);
                double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1));
                double classification = naiveBayes.classifyInstance(instance);

                if (correctValue == classification) {
                    corrects++;
                }
                if (correctValue == 1 && classification == 1) {
                    truePositive++;
                }
                if (correctValue == 1 && classification == 0) {
                    falseNegative++;
                }
                if (correctValue == 0 && classification == 1) {
                    falsePositive++;
                }
                if (correctValue == 0 && classification == 0) {
                    trueNegative++;
                }
            }

            PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathNaivebayes, false)));

            writer.println(naiveBayes.toString());

            writer.println("");
            writer.println("");
            writer.println("Results");
            writer.println(eval.toSummaryString());

            writer.close();

            response.sendRedirect(
                    "NaiveBayes?action=view&corrects=" + corrects + "&totalTest=" + instancesTest.size()
                            + "&totalTrainig=" + instancesTraining.size() + "&range=" + range + "&truePositive="
                            + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive
                            + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-naiveBayes.txt");

        } catch (Exception e) {
            System.out.println(e.getMessage());
            response.sendRedirect("Navigation?action=naiveBayes");
        }

        break;
    }
    default:
        response.sendError(404);
    }

}

From source file:cs.man.ac.uk.classifiers.GetAUC.java

License:Open Source License

/**
 * Computes the AUC for the supplied learner.
 * @return the AUC as a double value./*w  w w  . j  ava  2 s .  c o m*/
 */
@SuppressWarnings("unused")
private static double validate5x2CV() {
    try {
        // other options
        int runs = 5;
        int folds = 2;
        double AUC_SUM = 0;

        // perform cross-validation
        for (int i = 0; i < runs; i++) {
            // randomize data
            int seed = i + 1;
            Random rand = new Random(seed);
            Instances randData = new Instances(data);
            randData.randomize(rand);

            if (randData.classAttribute().isNominal()) {
                System.out.println("Stratifying...");
                randData.stratify(folds);
            }

            Evaluation eval = new Evaluation(randData);

            for (int n = 0; n < folds; n++) {
                Instances train = randData.trainCV(folds, n);
                Instances test = randData.testCV(folds, n);

                // the above code is used by the StratifiedRemoveFolds filter, the
                // code below by the Explorer/Experimenter:
                // Instances train = randData.trainCV(folds, n, rand);

                // build and evaluate classifier
                String[] options = { "-U", "-A" };
                J48 classifier = new J48();
                //HTree classifier = new HTree();

                classifier.setOptions(options);
                classifier.buildClassifier(train);
                eval.evaluateModel(classifier, test);

                // generate curve
                ThresholdCurve tc = new ThresholdCurve();
                int classIndex = 0;
                Instances result = tc.getCurve(eval.predictions(), classIndex);

                // plot curve
                vmc = new ThresholdVisualizePanel();
                AUC_SUM += ThresholdCurve.getROCArea(result);
                System.out.println("AUC: " + ThresholdCurve.getROCArea(result) + " \tAUC SUM: " + AUC_SUM);
            }
        }

        return AUC_SUM / ((double) runs * (double) folds);
    } catch (Exception e) {
        System.out.println("Exception validating data!");
        return 0;
    }
}

From source file:csav2.Weka_additive.java

public void classifyTestSet1(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES//from  w w  w.  j av  a 2 s  .c om
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[1] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(2);
        for (int j = 0; j < 2; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 1)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test1.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(1);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_autosentiment.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(1);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));

        count += 1;
        //optest+=op.nextToken()+" "+Double.toString((double) Math.round((prediction[0]) * 1000) / 1000)+"\n";                
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test1", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet2(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*from  w  w  w.ja  v  a 2s. c  o m*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PostiveMatch");
    attr[2] = new Attribute("NegativeMatch");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[3] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(4);
        for (int j = 0; j < 4; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 3)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test2.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(3);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwords.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(3);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test2", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet3(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*from w ww. ja  v a2 s.c om*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[7] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(8);
        for (int j = 0; j < 8; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 7)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test3.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(7);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndpos.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(7);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;

        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test3", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet4(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES/*w  ww .j  a  v a 2  s.c  om*/
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");
    attr[7] = new Attribute("amod");
    attr[8] = new Attribute("acomp");
    attr[9] = new Attribute("advmod");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[10] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);
    attrs.addElement(attr[8]);
    attrs.addElement(attr[9]);
    attrs.addElement(attr[10]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(11);
        for (int j = 0; j < 11; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 10)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test4.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(10);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddep.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(10);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test4", "txt");
}

From source file:csav2.Weka_additive.java

public void classifyTestSet5(String input) throws Exception {
    String ids = "";
    ReaderWriter rw = new ReaderWriter();

    //ATTRIBUTES//  w  w  w .  j a va 2 s .c o  m
    Attribute attr[] = new Attribute[50];

    //numeric
    attr[0] = new Attribute("Autosentiment");
    attr[1] = new Attribute("PositiveMatch");
    attr[2] = new Attribute("NegativeMatch");
    attr[3] = new Attribute("FW");
    attr[4] = new Attribute("JJ");
    attr[5] = new Attribute("RB");
    attr[6] = new Attribute("RB_JJ");
    attr[7] = new Attribute("amod");
    attr[8] = new Attribute("acomp");
    attr[9] = new Attribute("advmod");
    attr[10] = new Attribute("BLPos");
    attr[11] = new Attribute("BLNeg");

    //class
    FastVector classValue = new FastVector(3);
    classValue.addElement("p");
    classValue.addElement("n");
    classValue.addElement("o");
    attr[12] = new Attribute("answer", classValue);

    FastVector attrs = new FastVector();
    attrs.addElement(attr[0]);
    attrs.addElement(attr[1]);
    attrs.addElement(attr[2]);
    attrs.addElement(attr[3]);
    attrs.addElement(attr[4]);
    attrs.addElement(attr[5]);
    attrs.addElement(attr[6]);
    attrs.addElement(attr[7]);
    attrs.addElement(attr[8]);
    attrs.addElement(attr[9]);
    attrs.addElement(attr[10]);
    attrs.addElement(attr[11]);
    attrs.addElement(attr[12]);

    // Add Instances
    Instances dataset = new Instances("my_dataset", attrs, 0);

    StringTokenizer tokenizer = new StringTokenizer(input);

    while (tokenizer.hasMoreTokens()) {
        Instance example = new Instance(13);
        for (int j = 0; j < 13; j++) {
            String st = tokenizer.nextToken();
            System.out.println(j + " " + st);
            if (j == 0)
                example.setValue(attr[j], Float.parseFloat(st));
            else if (j == 12)
                example.setValue(attr[j], st);
            else
                example.setValue(attr[j], Integer.parseInt(st));
        }
        ids += tokenizer.nextToken() + "\t";
        dataset.add(example);
    }

    //Save dataset
    String file = "Classifier\\featurefile_additive_test5.arff";
    ArffSaver saver = new ArffSaver();
    saver.setInstances(dataset);
    saver.setFile(new File(file));
    saver.writeBatch();

    //Read dataset
    ArffLoader loader = new ArffLoader();
    loader.setFile(new File(file));
    dataset = loader.getDataSet();

    //Build classifier
    dataset.setClassIndex(12);

    //Read classifier back
    String file1 = "Classifier\\classifier_add_asAndpolarwordsAndposAnddepAndbl.model";
    InputStream is = new FileInputStream(file1);
    Classifier classifier;
    ObjectInputStream objectInputStream = new ObjectInputStream(is);
    classifier = (Classifier) objectInputStream.readObject();

    //Evaluate
    Instances test = new Instances(dataset, 0, dataset.numInstances());
    test.setClassIndex(12);

    //Do eval
    Evaluation eval = new Evaluation(test); //trainset
    eval.evaluateModel(classifier, test); //testset
    System.out.println(eval.toSummaryString());
    System.out.println("WEIGHTED F-MEASURE:" + eval.weightedFMeasure());
    System.out.println("WEIGHTED PRECISION:" + eval.weightedPrecision());
    System.out.println("WEIGHTED RECALL:" + eval.weightedRecall());

    //output predictions
    String optest = "", val = "";
    StringTokenizer op = new StringTokenizer(ids);
    int count = 0;
    while (op.hasMoreTokens()) {
        double[] prediction = classifier.distributionForInstance(test.instance(count));
        count += 1;
        if (prediction[0] > prediction[1]) {
            if (prediction[0] > prediction[2]) {
                val = "p: " + Double.toString((double) Math.round((prediction[0]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        } else {
            if (prediction[1] > prediction[2]) {
                val = "n: " + Double.toString((double) Math.round((prediction[1]) * 1000) / 1000);
            } else {
                val = "o: " + Double.toString((double) Math.round((prediction[2]) * 1000) / 1000);
            }
        }
        optest += op.nextToken() + "\t" + val + "\n";
    }
    rw.writeToFile(optest, "Answers_additive_Test5", "txt");
}