Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package knnclassifier; import weka.classifiers.Evaluation; import weka.core.Debug.Random; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Standardize; /** * * @author Mark */ public class Main { //static final String file = "C:\FishFiles\School\2015\Spring2015\cs450\cs450\files"; static final String file = "C:\\FishFiles\\School\\2015\\Spring2015\\cs450\\cs450\\files\\iris.csv"; public static void main(String[] args) throws Exception { DataSource source = new DataSource(file); Instances dataSet = source.getDataSet(); //Set up data dataSet.setClassIndex(dataSet.numAttributes() - 1); dataSet.randomize(new Random()); int trainingSize = (int) Math.round(dataSet.numInstances() * .7); int testSize = dataSet.numInstances() - trainingSize; Instances training = new Instances(dataSet, 0, trainingSize); Instances test = new Instances(dataSet, trainingSize, testSize); Standardize standardizedData = new Standardize(); standardizedData.setInputFormat(training); Instances newTest = Filter.useFilter(test, standardizedData); Instances newTraining = Filter.useFilter(training, standardizedData); KNNClassifier knn = new KNNClassifier(); knn.buildClassifier(newTraining); Evaluation eval = new Evaluation(newTraining); eval.evaluateModel(knn, newTest); System.out.println(eval.toSummaryString("\nResults\n======\n", false)); } }