Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package lector; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.core.Instances; public class Analizador { /** * @param args the command line arguments */ public static void main(String[] args) throws IOException { clasificador(); } public static void clasificador() { BufferedReader reader1; BufferedReader reader2; try { reader1 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos.arff")); reader2 = new BufferedReader(new FileReader("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos_inc.arff")); Instances train = new Instances(reader1); train.setClassIndex(train.numAttributes() - 1); System.out.println(train.classIndex() + " " + train.numAttributes()); Instances test = new Instances(reader2); test.setClassIndex(train.numAttributes() - 1); System.out.println(test.classIndex() + " " + test.numAttributes()); NaiveBayes model = new NaiveBayes(); model.buildClassifier(train); //classify Instances labeled = new Instances(test); for (int i = 0; i < test.numInstances(); i++) { double clsLabel = model.classifyInstance(test.instance(i)); labeled.instance(i).setClassValue(clsLabel); } // https://youtu.be/JY_x5zKTfyo?list=PLJbE6j2EG1pZnBhOg3_Rb63WLCprtyJag Evaluation eval_train = new Evaluation(test); eval_train.evaluateModel(model, test); reader1.close(); reader2.close(); //System.out.println(eval_train.toSummaryString("\nResults\n======\n", false)); String[] options = new String[4]; options[0] = "-t"; //name of training file options[1] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/" + "compartida/DataSetAnalisisSentimientos.arff"; options[2] = "-T"; options[3] = "/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/proyecto/" + "compartida/DataSetAnalisisSentimientos_inc.arff"; System.out.println(Evaluation.evaluateModel(model, options)); try ( // print classification results to file BufferedWriter writer = new BufferedWriter( new FileWriter("/Users/danieltapia/Google Drive/EPN/MAESTRIA/MSW128 BI/" + "proyecto/compartida/DataSetAnalisisSentimientos_labeled.arff"))) { writer.write(labeled.toString()); } } catch (Exception e) { } } }