List of usage examples for javax.media.j3d Appearance Appearance
public Appearance()
From source file:OrientedPtTest.java
public BranchGroup createSceneGraph() { // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); TransformGroup objScale = new TransformGroup(); Transform3D textMat = new Transform3D(); // Assuming uniform size chars, set scale to fit string in view textMat.setScale(1.2 / sl);//from www . j a v a 2 s .co m objScale.setTransform(textMat); // Create the transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add it to the // root of the subgraph. TransformGroup objTrans = new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objRoot.addChild(objTrans); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); Appearance apText = new Appearance(); Material m = new Material(); m.setLightingEnable(true); apText.setMaterial(m); Appearance apEarth = new Appearance(); Material mm = new Material(); mm.setLightingEnable(true); apEarth.setMaterial(mm); Appearance apStone = new Appearance(); apStone.setMaterial(mm); // create 3D text Font3D f3d = new Font3D(new Font(fontName, Font.PLAIN, 2), new FontExtrusion()); Point3f textPt = new Point3f(-sl / 2.0f, 3.0f, 0.0f); Text3D txt = new Text3D(f3d, textString, textPt); OrientedShape3D textShape = new OrientedShape3D(); textShape.setGeometry(txt); textShape.setAppearance(apText); textShape.setAlignmentMode(OrientedShape3D.ROTATE_ABOUT_POINT); // text is centered around 0, 3, 0. Make it rotate around 0,5,0 Point3f rotationPt = new Point3f(0.0f, 5.0f, 0.0f); textShape.setRotationPoint(rotationPt); objScale.addChild(textShape); // also add a small Sphere at the rotation point to // show that we are rotating around the right point Sphere sphere = new Sphere(0.2f); TransformGroup sphereGroup = new TransformGroup(); Transform3D sphereXform = new Transform3D(); sphereXform.set(new Vector3f(rotationPt)); sphereGroup.setTransform(sphereXform); sphereGroup.addChild(sphere); objScale.addChild(sphereGroup); // Create a simple shape leaf node, add it to the scene graph. Transform3D cubeMat = new Transform3D(); TransformGroup cubeTrans = new TransformGroup(cubeMat); cubeMat.set(new Vector3d(0.9, 0.0, -1.0)); cubeTrans.setTransform(cubeMat); cubeTrans.addChild(new ColorCube(0.3)); objTrans.addChild(cubeTrans); TextureLoader stoneTex = new TextureLoader(stoneImage, new String("RGB"), this); if (stoneTex != null) apStone.setTexture(stoneTex.getTexture()); TextureAttributes texAttr = new TextureAttributes(); texAttr.setTextureMode(TextureAttributes.REPLACE); apStone.setTextureAttributes(texAttr); Transform3D coneMat = new Transform3D(); TransformGroup coneTrans = new TransformGroup(coneMat); coneMat.set(new Vector3d(0.0, 0.0, 0.0)); coneTrans.setTransform(coneMat); coneTrans.addChild(new Cone(.2f, 0.8f, Cone.GENERATE_NORMALS | Cone.GENERATE_TEXTURE_COORDS, apStone)); objTrans.addChild(coneTrans); TextureLoader earthTex = new TextureLoader(earthImage, new String("RGB"), this); if (earthTex != null) apEarth.setTexture(earthTex.getTexture()); apEarth.setTextureAttributes(texAttr); Transform3D cylinderMat = new Transform3D(); TransformGroup cylinderTrans = new TransformGroup(cylinderMat); cylinderMat.set(new Vector3d(-0.9, 0.5, -1.0)); cylinderTrans.setTransform(cylinderMat); cylinderTrans.addChild( new Cylinder(.35f, 2.0f, Cylinder.GENERATE_NORMALS | Cylinder.GENERATE_TEXTURE_COORDS, apEarth)); objTrans.addChild(cylinderTrans); objTrans.addChild(objScale); // Set up the background Color3f bgColor = new Color3f(0.05f, 0.05f, 0.5f); Background bgNode = new Background(bgColor); bgNode.setApplicationBounds(bounds); objRoot.addChild(bgNode); // Set up the ambient light Color3f ambientColor = new Color3f(0.1f, 0.1f, 0.1f); AmbientLight ambientLightNode = new AmbientLight(ambientColor); ambientLightNode.setInfluencingBounds(bounds); objRoot.addChild(ambientLightNode); // Set up the directional lights Color3f light1Color = new Color3f(1.0f, 1.0f, 0.9f); Vector3f light1Direction = new Vector3f(1.0f, 1.0f, 1.0f); Color3f light2Color = new Color3f(1.0f, 1.0f, 0.9f); Vector3f light2Direction = new Vector3f(-1.0f, -1.0f, -1.0f); DirectionalLight light1 = new DirectionalLight(light1Color, light1Direction); light1.setInfluencingBounds(bounds); objRoot.addChild(light1); DirectionalLight light2 = new DirectionalLight(light2Color, light2Direction); light2.setInfluencingBounds(bounds); objRoot.addChild(light2); apText.setMaterial(mm); // Have Java 3D perform optimizations on this scene graph. objRoot.compile(); return objRoot; }
From source file:PickText3DGeometry.java
public BranchGroup createSceneGraph(Canvas3D canvas) { Color3f eColor = new Color3f(0.0f, 0.0f, 0.0f); Color3f sColor = new Color3f(1.0f, 1.0f, 1.0f); Color3f objColor = new Color3f(0.6f, 0.6f, 0.6f); Color3f lColor1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f lColor2 = new Color3f(0.0f, 1.0f, 0.0f); Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f); Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f); Transform3D t;/* w w w.ja v a2 s . c o m*/ // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); t3d.setScale(0.4); objScale.setTransform(t3d); objRoot.addChild(objScale); // Create a bounds for the background and lights BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Set up the background Background bg = new Background(bgColor); bg.setApplicationBounds(bounds); objScale.addChild(bg); Material m = new Material(objColor, eColor, objColor, sColor, 100.0f); Appearance a = new Appearance(); m.setLightingEnable(true); a.setMaterial(m); Font3D f3d = new Font3D(new Font("TestFont", Font.PLAIN, 1), new FontExtrusion()); Text3D text3D = new Text3D(f3d, new String("TEXT3D"), new Point3f(-2.0f, 0.7f, 0.0f)); text3D.setCapability(Geometry.ALLOW_INTERSECT); Shape3D s3D1 = new Shape3D(); s3D1.setGeometry(text3D); s3D1.setAppearance(a); // Create a transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. TransformGroup spinTg1 = new TransformGroup(); spinTg1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); spinTg1.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); spinTg1.setCapability(TransformGroup.ENABLE_PICK_REPORTING); spinTg1.addChild(s3D1); objScale.addChild(spinTg1); Text3D pick = new Text3D(f3d, new String("Pick me"), new Point3f(-2.0f, -0.7f, 0.0f)); pick.setCapability(Geometry.ALLOW_INTERSECT); Shape3D s3D2 = new Shape3D(); s3D2.setGeometry(pick); s3D2.setAppearance(a); // Create a transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. TransformGroup spinTg2 = new TransformGroup(); spinTg2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); spinTg2.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); spinTg2.setCapability(TransformGroup.ENABLE_PICK_REPORTING); spinTg2.addChild(s3D2); objScale.addChild(spinTg2); // Create the transform group node for the each light and initialize // it to the identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add them to the root // of the subgraph. // Create transformations for the positional lights t = new Transform3D(); Vector3d lPos1 = new Vector3d(0.0, 0.0, 2.0); t.set(lPos1); TransformGroup l1Trans = new TransformGroup(t); l1Trans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); l1Trans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); l1Trans.setCapability(TransformGroup.ENABLE_PICK_REPORTING); objScale.addChild(l1Trans); t = new Transform3D(); Vector3d lPos2 = new Vector3d(0.5, 1.2, 2.0); t.set(lPos2); TransformGroup l2Trans = new TransformGroup(t); l2Trans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); l2Trans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); l2Trans.setCapability(TransformGroup.ENABLE_PICK_REPORTING); objScale.addChild(l2Trans); // Create Geometry for point lights ColoringAttributes caL1 = new ColoringAttributes(); ColoringAttributes caL2 = new ColoringAttributes(); caL1.setColor(lColor1); caL2.setColor(lColor2); Appearance appL1 = new Appearance(); Appearance appL2 = new Appearance(); appL1.setColoringAttributes(caL1); appL2.setColoringAttributes(caL2); l1Trans.addChild(new Sphere(0.05f, Sphere.GENERATE_NORMALS | Sphere.ENABLE_GEOMETRY_PICKING, 15, appL1)); l2Trans.addChild(new Sphere(0.05f, Sphere.GENERATE_NORMALS | Sphere.ENABLE_GEOMETRY_PICKING, 15, appL2)); // Create lights AmbientLight aLgt = new AmbientLight(alColor); Light lgt1; Light lgt2; Point3f lPoint = new Point3f(0.0f, 0.0f, 0.0f); Point3f atten = new Point3f(1.0f, 0.0f, 0.0f); lgt1 = new PointLight(lColor1, lPoint, atten); lgt2 = new PointLight(lColor2, lPoint, atten); // Set the influencing bounds aLgt.setInfluencingBounds(bounds); lgt1.setInfluencingBounds(bounds); lgt2.setInfluencingBounds(bounds); // Add the lights into the scene graph objScale.addChild(aLgt); l1Trans.addChild(lgt1); l2Trans.addChild(lgt2); PickRotateBehavior behavior1 = new PickRotateBehavior(objRoot, canvas, bounds); behavior1.setMode(PickTool.GEOMETRY); behavior1.setTolerance(0.0f); objRoot.addChild(behavior1); PickZoomBehavior behavior2 = new PickZoomBehavior(objRoot, canvas, bounds); behavior2.setMode(PickTool.GEOMETRY); behavior2.setTolerance(0.0f); objRoot.addChild(behavior2); PickTranslateBehavior behavior3 = new PickTranslateBehavior(objRoot, canvas, bounds); behavior3.setMode(PickTool.GEOMETRY); behavior3.setTolerance(0.0f); objRoot.addChild(behavior3); // Let Java 3D perform optimizations on this scene graph. objRoot.compile(); return objRoot; }
From source file:SimpleCollision2.java
/** * Creates the content branch of the scene graph. * /*from w ww. ja va2s . c o m*/ * @return BranchGroup with content attached. */ protected BranchGroup buildContentBranch() { //First create a different appearance for each cube Appearance app1 = new Appearance(); Appearance app2 = new Appearance(); Appearance app3 = new Appearance(); Color3f ambientColour1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f ambientColour2 = new Color3f(1.0f, 1.0f, 0.0f); Color3f ambientColour3 = new Color3f(1.0f, 1.0f, 1.0f); Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f); Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f); Color3f diffuseColour1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f diffuseColour2 = new Color3f(1.0f, 1.0f, 0.0f); Color3f diffuseColour3 = new Color3f(1.0f, 1.0f, 1.0f); float shininess = 20.0f; app1.setMaterial(new Material(ambientColour1, emissiveColour, diffuseColour1, specularColour, shininess)); app2.setMaterial(new Material(ambientColour2, emissiveColour, diffuseColour2, specularColour, shininess)); app3.setMaterial(new Material(ambientColour3, emissiveColour, diffuseColour3, specularColour, shininess)); //Build the vertex array for the cubes. We can use the same //data for each cube so we just define one set of data IndexedQuadArray indexedCube = new IndexedQuadArray(8, IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24); Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f), new Point3f(-1.0f, 1.0f, 1.0f), new Point3f(-1.0f, -1.0f, 1.0f), new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f), new Point3f(-1.0f, 1.0f, -1.0f), new Point3f(-1.0f, -1.0f, -1.0f), new Point3f(1.0f, -1.0f, -1.0f) }; Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f), new Vector3f(0.0f, 0.0f, -1.0f), new Vector3f(1.0f, 0.0f, 0.0f), new Vector3f(-1.0f, 0.0f, 0.0f), new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) }; int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1, 0, 4, 5, 1, 6, 7, 3, 2 }; int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 }; indexedCube.setCoordinates(0, cubeCoordinates); indexedCube.setNormals(0, cubeNormals); indexedCube.setCoordinateIndices(0, cubeCoordIndices); indexedCube.setNormalIndices(0, cubeNormalIndices); //Create the three cubes leftCube = new Shape3D(indexedCube, app1); rightCube = new Shape3D(indexedCube, app2); moveCube = new Shape3D(indexedCube, app3); //Define some user data so that we can print meaningful messages leftCube.setUserData(new String("left cube")); rightCube.setUserData(new String("right cube")); //Create the content branch and add the lights BranchGroup contentBranch = new BranchGroup(); addLights(contentBranch); //Set up the transform to position the left cube Transform3D leftGroupXfm = new Transform3D(); leftGroupXfm.set(new Vector3d(-1.5, 0.0, 0.0)); leftGroup = new TransformGroup(leftGroupXfm); //Set up the transform to position the right cube Transform3D rightGroupXfm = new Transform3D(); rightGroupXfm.set(new Vector3d(1.5, 0.0, 0.0)); rightGroup = new TransformGroup(rightGroupXfm); //Create the movable cube's transform with a scale and //a translation. Set up the //capabilities so it can be moved by the behaviour Transform3D moveXfm = new Transform3D(); moveXfm.set(0.7, new Vector3d(0.0, 2.0, 1.0)); moveGroup = new TransformGroup(moveXfm); moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); moveGroup.setCapability(TransformGroup.ENABLE_PICK_REPORTING); //Create the behaviour to move the movable cube PickTranslateBehavior pickTranslate = new PickTranslateBehavior(contentBranch, myCanvas3D, bounds); contentBranch.addChild(pickTranslate); //Create and add the two colision detectors CollisionDetector2 myColDetLeft = new CollisionDetector2(leftCube, bounds); contentBranch.addChild(myColDetLeft); CollisionDetector2 myColDetRight = new CollisionDetector2(rightCube, bounds); contentBranch.addChild(myColDetRight); //Set up the scene graph contentBranch.addChild(moveGroup); contentBranch.addChild(leftGroup); contentBranch.addChild(rightGroup); moveGroup.addChild(moveCube); leftGroup.addChild(leftCube); rightGroup.addChild(rightCube); return contentBranch; }
From source file:SimpleTest.java
public BranchGroup createSceneGraph() { // create a parent BranchGroup node for the Sphere BranchGroup bg = new BranchGroup(); // create an Appearance for the Sphere. // The Appearance object controls various rendering // options for the Sphere geometry. Appearance app = new Appearance(); // assign a Material to the Appearance. For the Sphere // to respond to the light in the scene it must have a Material. // Assign some colors to the Material and a shininess setting // that controls how reflective the surface is to lighting. Color3f objColor = new Color3f(0.8f, 0.2f, 1.0f); Color3f black = new Color3f(0.0f, 0.0f, 0.0f); app.setMaterial(new Material(objColor, black, objColor, black, 80.0f)); // create a Sphere with a radius of 0.1 // and associate the Appearance that we described. // the option GENERATE_NORMALS is required to ensure that the // Sphere responds correctly to lighting. Sphere sphere = new Sphere(0.1f, Primitive.GENERATE_NORMALS, app); // add the sphere to the BranchGroup to wire // it into the scene. bg.addChild(sphere);/*from ww w.j a v a 2s .c om*/ return bg; }
From source file:SimpleMorph.java
/** * Build the content branch for the scene graph * /*from w w w .ja v a 2 s . c om*/ * @return BranchGroup that is the root of the content */ protected BranchGroup buildContentBranch() { //Create the appearance object Appearance app = new Appearance(); Color3f ambientColour = new Color3f(1.0f, 0.0f, 0.0f); Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f); Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f); Color3f diffuseColour = new Color3f(1.0f, 0.0f, 0.0f); float shininess = 20.0f; app.setMaterial(new Material(ambientColour, emissiveColour, diffuseColour, specularColour, shininess)); //Make the cube key shape IndexedQuadArray indexedCube = new IndexedQuadArray(8, IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24); Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f), new Point3f(-1.0f, 1.0f, 1.0f), new Point3f(-1.0f, -1.0f, 1.0f), new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f), new Point3f(-1.0f, 1.0f, -1.0f), new Point3f(-1.0f, -1.0f, -1.0f), new Point3f(1.0f, -1.0f, -1.0f) }; Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f), new Vector3f(0.0f, 0.0f, -1.0f), new Vector3f(1.0f, 0.0f, 0.0f), new Vector3f(-1.0f, 0.0f, 0.0f), new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) }; int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1, 0, 4, 5, 1, 6, 7, 3, 2 }; int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 }; indexedCube.setCoordinates(0, cubeCoordinates); indexedCube.setNormals(0, cubeNormals); indexedCube.setCoordinateIndices(0, cubeCoordIndices); indexedCube.setNormalIndices(0, cubeNormalIndices); //Make the pyramid key shape. Although this needs //only five vertices to create the desired shape, we //need to use six vertices so that it has the same //number as the cube. IndexedQuadArray indexedPyramid = new IndexedQuadArray(8, IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24); Point3f[] pyramidCoordinates = { new Point3f(0.0f, 1.0f, 0.0f), new Point3f(0.0f, 1.0f, 0.0f), new Point3f(-1.0f, -1.0f, 1.0f), new Point3f(1.0f, -1.0f, 1.0f), new Point3f(0.0f, 1.0f, 0.0f), new Point3f(0.0f, 1.0f, 0.0f), new Point3f(-1.0f, -1.0f, -1.0f), new Point3f(1.0f, -1.0f, -1.0f) }; Vector3f[] pyramidNormals = { new Vector3f(0.0f, 0.0f, 1.0f), new Vector3f(0.0f, 0.0f, -1.0f), new Vector3f(1.0f, 0.0f, 0.0f), new Vector3f(-1.0f, 0.0f, 0.0f), new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) }; int pyramidCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1, 0, 4, 5, 1, 6, 7, 3, 2 }; int pyramidNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 }; indexedPyramid.setCoordinates(0, pyramidCoordinates); indexedPyramid.setNormals(0, pyramidNormals); indexedPyramid.setCoordinateIndices(0, pyramidCoordIndices); indexedPyramid.setNormalIndices(0, pyramidNormalIndices); //Set the contents of the array to the two shapes GeometryArray[] theShapes = new GeometryArray[2]; theShapes[0] = indexedCube; theShapes[1] = indexedPyramid; BranchGroup contentBranch = new BranchGroup(); //Create a transform to rotate the shape slightly Transform3D rotateCube = new Transform3D(); rotateCube.set(new AxisAngle4d(1.0, 1.0, 0.0, Math.PI / 4.0)); TransformGroup rotationGroup = new TransformGroup(rotateCube); contentBranch.addChild(rotationGroup); addLights(contentBranch); //Call the function to build the morph rotationGroup.addChild(createMorph(theShapes, app)); return contentBranch; }
From source file:LineTypes.java
Group createLineTypes() { Group lineGroup = new Group(); Appearance app = new Appearance(); ColoringAttributes ca = new ColoringAttributes(black, ColoringAttributes.SHADE_FLAT); app.setColoringAttributes(ca);/* w w w . ja va 2 s . co m*/ // Plain line Point3f[] plaPts = new Point3f[2]; plaPts[0] = new Point3f(-0.9f, -0.7f, 0.0f); plaPts[1] = new Point3f(-0.5f, 0.7f, 0.0f); LineArray pla = new LineArray(2, LineArray.COORDINATES); pla.setCoordinates(0, plaPts); Shape3D plShape = new Shape3D(pla, app); lineGroup.addChild(plShape); // line pattern dot Point3f[] dotPts = new Point3f[2]; dotPts[0] = new Point3f(-0.4f, -0.7f, 0.0f); dotPts[1] = new Point3f(-0.0f, 0.7f, 0.0f); LineArray dot = new LineArray(2, LineArray.COORDINATES); dot.setCoordinates(0, dotPts); LineAttributes dotLa = new LineAttributes(); dotLa.setLineWidth(2.0f); dotLa.setLinePattern(LineAttributes.PATTERN_DOT); Appearance dotApp = new Appearance(); dotApp.setLineAttributes(dotLa); dotApp.setColoringAttributes(ca); Shape3D dotShape = new Shape3D(dot, dotApp); lineGroup.addChild(dotShape); // line pattern dash Point3f[] dashPts = new Point3f[2]; dashPts[0] = new Point3f(-0.0f, -0.7f, 0.0f); dashPts[1] = new Point3f(0.4f, 0.7f, 0.0f); LineArray dash = new LineArray(2, LineArray.COORDINATES); dash.setCoordinates(0, dashPts); LineAttributes dashLa = new LineAttributes(); dashLa.setLineWidth(4.0f); dashLa.setLinePattern(LineAttributes.PATTERN_DASH); Appearance dashApp = new Appearance(); dashApp.setLineAttributes(dashLa); dashApp.setColoringAttributes(ca); Shape3D dashShape = new Shape3D(dash, dashApp); lineGroup.addChild(dashShape); // line pattern dot-dash Point3f[] dotDashPts = new Point3f[2]; dotDashPts[0] = new Point3f(0.5f, -0.7f, 0.0f); dotDashPts[1] = new Point3f(0.9f, 0.7f, 0.0f); LineArray dotDash = new LineArray(2, LineArray.COORDINATES); dotDash.setCoordinates(0, dotDashPts); LineAttributes dotDashLa = new LineAttributes(); dotDashLa.setLineWidth(4.0f); dotDashLa.setLinePattern(LineAttributes.PATTERN_DASH_DOT); Appearance dotDashApp = new Appearance(); dotDashApp.setLineAttributes(dotDashLa); dotDashApp.setColoringAttributes(ca); Shape3D dotDashShape = new Shape3D(dotDash, dotDashApp); lineGroup.addChild(dotDashShape); return lineGroup; }
From source file:Text3DLoad.java
public BranchGroup createSceneGraph() { float sl = textString.length(); // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); // Assuming uniform size chars, set scale to fit string in view t3d.setScale(1.2 / sl);// w w w . j a v a 2 s .c om objScale.setTransform(t3d); objRoot.addChild(objScale); // Create the transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add it to the // root of the subgraph. TransformGroup objTrans = new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objScale.addChild(objTrans); Font3D f3d; if (tessellation > 0.0) { f3d = new Font3D(new Font(fontName, Font.PLAIN, 2), tessellation, new FontExtrusion()); } else { f3d = new Font3D(new Font(fontName, Font.PLAIN, 2), new FontExtrusion()); } Text3D txt = new Text3D(f3d, textString, new Point3f(-sl / 2.0f, -1.f, -1.f)); Shape3D sh = new Shape3D(); Appearance app = new Appearance(); Material mm = new Material(); mm.setLightingEnable(true); app.setMaterial(mm); sh.setGeometry(txt); sh.setAppearance(app); objTrans.addChild(sh); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); if (false) { Transform3D yAxis = new Transform3D(); Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 4000, 0, 0, 0, 0, 0); RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, objTrans, yAxis, 0.0f, (float) Math.PI * 2.0f); rotator.setSchedulingBounds(bounds); objTrans.addChild(rotator); } // Set up the background Color3f bgColor = new Color3f(0.05f, 0.05f, 0.5f); Background bgNode = new Background(bgColor); bgNode.setApplicationBounds(bounds); objRoot.addChild(bgNode); // Set up the ambient light Color3f ambientColor = new Color3f(0.3f, 0.3f, 0.3f); AmbientLight ambientLightNode = new AmbientLight(ambientColor); ambientLightNode.setInfluencingBounds(bounds); objRoot.addChild(ambientLightNode); // Set up the directional lights Color3f light1Color = new Color3f(1.0f, 1.0f, 0.9f); Vector3f light1Direction = new Vector3f(1.0f, 1.0f, 1.0f); Color3f light2Color = new Color3f(1.0f, 1.0f, 0.9f); Vector3f light2Direction = new Vector3f(-1.0f, -1.0f, -1.0f); DirectionalLight light1 = new DirectionalLight(light1Color, light1Direction); light1.setInfluencingBounds(bounds); objRoot.addChild(light1); DirectionalLight light2 = new DirectionalLight(light2Color, light2Direction); light2.setInfluencingBounds(bounds); objRoot.addChild(light2); return objRoot; }
From source file:SimpleCollision.java
/** * Creates the content branch of the scene graph. * // ww w .ja v a2s .co m * @return BranchGroup with content attached. */ protected BranchGroup buildContentBranch() { //First create a different appearance for each cube Appearance app1 = new Appearance(); Appearance app2 = new Appearance(); Appearance app3 = new Appearance(); Color3f ambientColour1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f ambientColour2 = new Color3f(1.0f, 1.0f, 0.0f); Color3f ambientColour3 = new Color3f(1.0f, 1.0f, 1.0f); Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f); Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f); Color3f diffuseColour1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f diffuseColour2 = new Color3f(1.0f, 1.0f, 0.0f); Color3f diffuseColour3 = new Color3f(1.0f, 1.0f, 1.0f); float shininess = 20.0f; app1.setMaterial(new Material(ambientColour1, emissiveColour, diffuseColour1, specularColour, shininess)); app2.setMaterial(new Material(ambientColour2, emissiveColour, diffuseColour2, specularColour, shininess)); app3.setMaterial(new Material(ambientColour3, emissiveColour, diffuseColour3, specularColour, shininess)); //Create the vertex data for the cube. Since each shape is //a cube we can use the same vertex data for each cube IndexedQuadArray indexedCube = new IndexedQuadArray(8, IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24); Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f), new Point3f(-1.0f, 1.0f, 1.0f), new Point3f(-1.0f, -1.0f, 1.0f), new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f), new Point3f(-1.0f, 1.0f, -1.0f), new Point3f(-1.0f, -1.0f, -1.0f), new Point3f(1.0f, -1.0f, -1.0f) }; Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f), new Vector3f(0.0f, 0.0f, -1.0f), new Vector3f(1.0f, 0.0f, 0.0f), new Vector3f(-1.0f, 0.0f, 0.0f), new Vector3f(0.0f, 1.0f, 0.0f), new Vector3f(0.0f, -1.0f, 0.0f) }; int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1, 0, 4, 5, 1, 6, 7, 3, 2 }; int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 }; indexedCube.setCoordinates(0, cubeCoordinates); indexedCube.setNormals(0, cubeNormals); indexedCube.setCoordinateIndices(0, cubeCoordIndices); indexedCube.setNormalIndices(0, cubeNormalIndices); //Create the three cubes leftCube = new Shape3D(indexedCube, app1); rightCube = new Shape3D(indexedCube, app2); moveCube = new Shape3D(indexedCube, app3); //Define the user data so that we can print out the //name of the colliding cube. leftCube.setUserData(new String("left cube")); rightCube.setUserData(new String("right cube")); //Create the content branch and add the lights BranchGroup contentBranch = new BranchGroup(); addLights(contentBranch); //Create and set up the movable cube's TransformGroup. //This scales and translates the cube and then sets the // read, write and pick reporting capabilities. Transform3D moveXfm = new Transform3D(); moveXfm.set(0.7, new Vector3d(0.0, 2.0, 1.0)); moveGroup = new TransformGroup(moveXfm); moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); moveGroup.setCapability(TransformGroup.ENABLE_PICK_REPORTING); //Create the left cube's TransformGroup Transform3D leftGroupXfm = new Transform3D(); leftGroupXfm.set(new Vector3d(-1.5, 0.0, 0.0)); leftGroup = new TransformGroup(leftGroupXfm); //Create the right cube's TransformGroup Transform3D rightGroupXfm = new Transform3D(); rightGroupXfm.set(new Vector3d(1.5, 0.0, 0.0)); rightGroup = new TransformGroup(rightGroupXfm); //Add the behaviour to allow us to move the cube PickTranslateBehavior pickTranslate = new PickTranslateBehavior(contentBranch, myCanvas3D, bounds); contentBranch.addChild(pickTranslate); //Add our CollisionDetector class to detect collisions with //the movable cube. CollisionDetector myColDet = new CollisionDetector(moveCube, bounds); contentBranch.addChild(myColDet); //Create the content branch hierarchy. contentBranch.addChild(moveGroup); contentBranch.addChild(leftGroup); contentBranch.addChild(rightGroup); moveGroup.addChild(moveCube); leftGroup.addChild(leftCube); rightGroup.addChild(rightCube); return contentBranch; }
From source file:ModelClipTest2.java
public BranchGroup createSceneGraph() { // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); t3d.setScale(0.4);/*w w w.j a va 2s . c om*/ objScale.setTransform(t3d); objRoot.addChild(objScale); // Create lights BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); //Shine it with two colored lights. Color3f lColor0 = new Color3f(1.0f, 1.0f, 1.0f); Color3f lColor1 = new Color3f(0.5f, 0.0f, 0.5f); Color3f lColor2 = new Color3f(0.7f, 0.7f, 0.0f); Vector3f lDir1 = new Vector3f(-1.0f, -1.0f, 1.0f); Vector3f lDir2 = new Vector3f(0.0f, 0.0f, -1.0f); AmbientLight lgt0 = new AmbientLight(true, lColor2); DirectionalLight lgt1 = new DirectionalLight(lColor1, lDir1); DirectionalLight lgt2 = new DirectionalLight(lColor2, lDir2); lgt0.setInfluencingBounds(bounds); lgt1.setInfluencingBounds(bounds); lgt2.setInfluencingBounds(bounds); objScale.addChild(lgt0); objScale.addChild(lgt1); objScale.addChild(lgt2); // Create a Transformgroup for the geometry TransformGroup objRot = new TransformGroup(); Transform3D t3d1 = new Transform3D(); AxisAngle4f rot1 = new AxisAngle4f(0.0f, 1.0f, 0.0f, 45.0f); t3d1.setRotation(rot1); objRot.setTransform(t3d1); objScale.addChild(objRot); //Create a cylinder PolygonAttributes attr = new PolygonAttributes(); attr.setCullFace(PolygonAttributes.CULL_NONE); Appearance ap = new Appearance(); Material mat = new Material(); mat.setLightingEnable(true); ap.setMaterial(mat); ap.setPolygonAttributes(attr); Cylinder CylinderObj = new Cylinder(0.5f, 2.2f, ap); objRot.addChild(CylinderObj); //Create a box Box BoxObj = new Box(0.8f, 0.8f, 0.8f, ap); objRot.addChild(BoxObj); // This Transformgroup is used by the mouse manipulators to // move the model clip planes. TransformGroup objTrans = new TransformGroup(); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objRot.addChild(objTrans); // Create the rotate behavior node MouseRotate behavior = new MouseRotate(objTrans); objTrans.addChild(behavior); behavior.setSchedulingBounds(bounds); // Create the zoom behavior node MouseZoom behavior2 = new MouseZoom(objTrans); objTrans.addChild(behavior2); behavior2.setSchedulingBounds(bounds); //Create Model Clip ModelClip mc = new ModelClip(); boolean enables[] = { false, false, false, false, false, false }; Vector4d eqn = new Vector4d(0.0, 1.0, 1.0, 0.0); mc.setEnables(enables); mc.setPlane(1, eqn); mc.setEnable(1, true); mc.setInfluencingBounds(bounds); objTrans.addChild(mc); // Let Java 3D perform optimizations on this scene graph. objRoot.compile(); return objRoot; }
From source file:SphereMotion.java
public BranchGroup createSceneGraph(SimpleUniverse u) { Color3f eColor = new Color3f(0.0f, 0.0f, 0.0f); Color3f sColor = new Color3f(1.0f, 1.0f, 1.0f); Color3f objColor = new Color3f(0.6f, 0.6f, 0.6f); Color3f lColor1 = new Color3f(1.0f, 0.0f, 0.0f); Color3f lColor2 = new Color3f(0.0f, 1.0f, 0.0f); Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f); Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f); Transform3D t;//from ww w .j av a2 s. c o m // Create the root of the branch graph BranchGroup objRoot = new BranchGroup(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); t3d.setScale(0.4); objScale.setTransform(t3d); objRoot.addChild(objScale); // Create a bounds for the background and lights BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Set up the background Background bg = new Background(bgColor); bg.setApplicationBounds(bounds); objScale.addChild(bg); // Create a Sphere object, generate one copy of the sphere, // and add it into the scene graph. Material m = new Material(objColor, eColor, objColor, sColor, 100.0f); Appearance a = new Appearance(); m.setLightingEnable(true); a.setMaterial(m); Sphere sph = new Sphere(1.0f, Sphere.GENERATE_NORMALS, 80, a); objScale.addChild(sph); // Create the transform group node for the each light and initialize // it to the identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add them to the root // of the subgraph. TransformGroup l1RotTrans = new TransformGroup(); l1RotTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objScale.addChild(l1RotTrans); TransformGroup l2RotTrans = new TransformGroup(); l2RotTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); objScale.addChild(l2RotTrans); // Create transformations for the positional lights t = new Transform3D(); Vector3d lPos1 = new Vector3d(0.0, 0.0, 2.0); t.set(lPos1); TransformGroup l1Trans = new TransformGroup(t); l1RotTrans.addChild(l1Trans); t = new Transform3D(); Vector3d lPos2 = new Vector3d(0.5, 0.8, 2.0); t.set(lPos2); TransformGroup l2Trans = new TransformGroup(t); l2RotTrans.addChild(l2Trans); // Create Geometry for point lights ColoringAttributes caL1 = new ColoringAttributes(); ColoringAttributes caL2 = new ColoringAttributes(); caL1.setColor(lColor1); caL2.setColor(lColor2); Appearance appL1 = new Appearance(); Appearance appL2 = new Appearance(); appL1.setColoringAttributes(caL1); appL2.setColoringAttributes(caL2); l1Trans.addChild(new Sphere(0.05f, appL1)); l2Trans.addChild(new Sphere(0.05f, appL2)); // Create lights AmbientLight aLgt = new AmbientLight(alColor); Light lgt1 = null; Light lgt2 = null; Point3f lPoint = new Point3f(0.0f, 0.0f, 0.0f); Point3f atten = new Point3f(1.0f, 0.0f, 0.0f); Vector3f lDirect1 = new Vector3f(lPos1); Vector3f lDirect2 = new Vector3f(lPos2); lDirect1.negate(); lDirect2.negate(); switch (lightType) { case DIRECTIONAL_LIGHT: lgt1 = new DirectionalLight(lColor1, lDirect1); lgt2 = new DirectionalLight(lColor2, lDirect2); break; case POINT_LIGHT: lgt1 = new PointLight(lColor1, lPoint, atten); lgt2 = new PointLight(lColor2, lPoint, atten); break; case SPOT_LIGHT: lgt1 = new SpotLight(lColor1, lPoint, atten, lDirect1, 25.0f * (float) Math.PI / 180.0f, 10.0f); lgt2 = new SpotLight(lColor2, lPoint, atten, lDirect2, 25.0f * (float) Math.PI / 180.0f, 10.0f); break; } // Set the influencing bounds aLgt.setInfluencingBounds(bounds); lgt1.setInfluencingBounds(bounds); lgt2.setInfluencingBounds(bounds); // Add the lights into the scene graph objScale.addChild(aLgt); l1Trans.addChild(lgt1); l2Trans.addChild(lgt2); // Create a new Behavior object that will perform the desired // operation on the specified transform object and add it into the // scene graph. Transform3D yAxis = new Transform3D(); Alpha rotor1Alpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 4000, 0, 0, 0, 0, 0); RotationInterpolator rotator1 = new RotationInterpolator(rotor1Alpha, l1RotTrans, yAxis, 0.0f, (float) Math.PI * 2.0f); rotator1.setSchedulingBounds(bounds); l1RotTrans.addChild(rotator1); // Create a new Behavior object that will perform the desired // operation on the specified transform object and add it into the // scene graph. Alpha rotor2Alpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 1000, 0, 0, 0, 0, 0); RotationInterpolator rotator2 = new RotationInterpolator(rotor2Alpha, l2RotTrans, yAxis, 0.0f, 0.0f); bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); rotator2.setSchedulingBounds(bounds); l2RotTrans.addChild(rotator2); // Create a position interpolator and attach it to the view // platform TransformGroup vpTrans = u.getViewingPlatform().getViewPlatformTransform(); Transform3D axisOfTranslation = new Transform3D(); Alpha transAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE, 0, 0, 5000, 0, 0, 5000, 0, 0); axisOfTranslation.rotY(-Math.PI / 2.0); PositionInterpolator translator = new PositionInterpolator(transAlpha, vpTrans, axisOfTranslation, 2.0f, 3.5f); translator.setSchedulingBounds(bounds); objScale.addChild(translator); // Let Java 3D perform optimizations on this scene graph. objRoot.compile(); return objRoot; }