List of usage examples for java.lang Math exp
@HotSpotIntrinsicCandidate public static double exp(double a)
From source file:bide.prior.PriorBeta.java
public static double pdf(double x, double alpha, double beta) { double z = recomputeZ(alpha, beta); double logX = Math.log(x); double log1mX = Math.log1p(-x); return Math.exp((alpha - 1) * logX + (beta - 1) * log1mX - z); }
From source file:com.QMTunnelling.GaussianPotential.java
public static Double Exp(double x) { //let the Exp function handle a double parameter so we return Math.exp(x); //dont have to worry about which to use }
From source file:com.davidbracewell.ml.classification.bayes.BernoulliNaiveBayes.java
@Override protected ClassificationResult classifyImpl(Instance instance) { int numClasses = getTargetFeature().alphabetSize(); double[] probabilities = new double[numClasses]; double sum = 0d; for (int i = 0; i < numClasses; i++) { probabilities[i] = FastMath.log10(priors[i]); for (int f = 0; f < getFeatures().size(); f++) { if (instance.isDefined(f)) { probabilities[i] += FastMath.log10(conditionals[f][i]); } else { probabilities[i] += FastMath.log10(1 - conditionals[f][i]); }//w ww . j a v a2 s . c om } probabilities[i] = Math.exp(probabilities[i]); sum += probabilities[i]; } //normalize to make probabilities add to one for (int i = 0; i < numClasses; i++) { probabilities[i] = probabilities[i] / sum; } return new ClassificationResult(getTargetFeature(), probabilities); }
From source file:hivemall.utils.math.MathUtils.java
public static double sigmoid(final double x) { double x2 = Math.max(Math.min(x, 23.d), -23.d); return 1.d / (1.d + Math.exp(-x2)); }
From source file:com.cloudera.hts.utils.math.MyFunc2.java
public double[] gradient(double t, double... parameters) { final double a = parameters[0]; final double b = parameters[1]; final double c = parameters[2]; return new double[] { Math.exp(-c * t) * Math.pow(t, b), a * Math.exp(-c * t) * Math.pow(t, b) * Math.log(t), a * (-Math.exp(-c * t)) * Math.pow(t, b + 1) }; }
From source file:ch.unil.genescore.vegas.DistributionMethods.java
public static double normalCumulativeProbabilityUpperTailApprox(double q) { q = Math.abs(q);/*from www . ja va 2 s . c om*/ double aa = -(q * q) / 2 - Math.log(q) - 0.5 * Math.log(2 * Math.PI); return (Math.exp(aa)); }
From source file:edu.oregonstate.eecs.mcplan.ml.RadialBasisFunctionKernel.java
@Override public double apply(final RealVector x, final RealVector y) { final RealVector diff = x.subtract(y); final double sq_norm2 = diff.dotProduct(diff); return Math.exp(gamma_ * sq_norm2); }
From source file:net.nicoulaj.benchmarks.math.DoubleExp.java
@GenerateMicroBenchmark public void math(BlackHole hole) { for (int i = 0; i < data.length - 1; i++) hole.consume(Math.exp(data[i])); }
From source file:com.opengamma.analytics.financial.model.option.pricing.tree.LogNormalBinomialTreeBuilder.java
@Override protected double[] getForwards(double[] spots, T data, double t, double dt) { int n = spots.length; double[] forwards = new double[n]; for (int i = 0; i < n; i++) { double drift = data.getLocalDrift(spots[i], t); forwards[i] = spots[i] * Math.exp(drift * dt); }// w w w .j a v a2 s . co m return forwards; }
From source file:edu.byu.nlp.stats.DirichletDistribution.java
private static double[][] moments(double[][] data, int K) { double[] expectedX = new double[K]; double[] expectedXSquared = new double[K]; for (double[] theta : data) { if (theta.length != K) { throw new IllegalArgumentException("Dimensions of data and alpha do not match!"); }// w w w . j ava2 s.co m for (int k = 0; k < expectedX.length; k++) { double p = Math.exp(theta[k]); expectedX[k] += p; expectedXSquared[k] += p * p; } } DoubleArrays.divideToSelf(expectedX, data.length); DoubleArrays.divideToSelf(expectedXSquared, data.length); return new double[][] { expectedX, expectedXSquared }; }