List of usage examples for java.lang Math exp
@HotSpotIntrinsicCandidate public static double exp(double a)
From source file:Main.java
public static double sinh(double t) { return (Math.exp(t) - Math.exp(-t)) / 2; }
From source file:com.example.PJS.java
public static double PJSNormal(double x) { // returns the cumulative normal distribution function (CNDF) // for a standard normal: N(0,1) short adjust; if (x < 0) { adjust = 1;/*from w w w . jav a2 s . c om*/ x = -x; } else { adjust = 0; } final double t; final double poly; final double res; t = 1 / (1 + 0.2316419 * x); poly = ((((1.330274429 * t - 1.821255978) * t + 1.781477937) * t - 0.356563782) * t + 0.31938153) * t; res = 1 - 0.398942280401433 * Math.exp(-x * x / 2) * poly; if (adjust == 1) { return (1 - res); } else { return (res); } }
From source file:Main.java
/** * Returns the <a href="http://mathworld.wolfram.com/HyperbolicSine.html"> * hyperbolic sine</a> of x./*from w w w . ja v a 2s .com*/ * * @param x double value for which to find the hyperbolic sine * @return hyperbolic sine of x */ public static double sinh(double x) { return (Math.exp(x) - Math.exp(-x)) / 2.0; }
From source file:Main.java
/** * Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html"> * hyperbolic cosine</a> of x.//from w ww .j av a2 s.c om * * @param x double value for which to find the hyperbolic cosine * @return hyperbolic cosine of x */ public static double cosh(double x) { return (Math.exp(x) + Math.exp(-x)) / 2.0; }
From source file:gedi.util.math.stat.distributions.LfcDistribution.java
public static double dlfc(double l, double a, double b, boolean log_p) { double r = (a * l + 1) * Math.log(2) - MathFunctions.lbeta(a, b) - (a + b) * Math.log(1 + Math.pow(2, l)); if (!log_p)//from ww w .j a v a 2s. c o m r = Math.exp(r); return r; }
From source file:com.example.PJS.java
public static double N(double z) { /**/*w w w . j a va2s . com*/ * Normal Distribution Function, PDF probability density function *Odegaard Dic 2003, page 129 */ double n = 1 / Math.sqrt(2 * Math.PI) * Math.exp(-0.5 * z * z); return n; }
From source file:etomica.math.SpecialFunctions.java
/** * consider using org.apache.commons.math3.special.Erf.erfc() * this method is substantially faster (~10x - 100x), but only accurate to ~10^-7 * // w w w. j a v a2s. c o m * Complementary error function, computed using the approximant 7.1.26 of Abramowitz & Stegun. * Defined for x >= 0 */ public static double erfc(double x) { double t = 1.0 / (1.0 + 0.3275911 * x); return (t * (0.254829592 + t * (-0.284496736 + t * (1.421413741 + t * (-1.453152027 + 1.061405429 * t))))) * Math.exp(-x * x); }
From source file:Util.java
/** * Returns the sum of two doubles expressed in log space, * that is,// ww w. ja va 2 s. co m * <pre> * sumLogProb = log (e^a + e^b) * = log e^a(1 + e^(b-a)) * = a + log (1 + e^(b-a)) * </pre> * * By exponentiating <tt>b-a</tt>, we obtain better numerical precision than * we would if we calculated <tt>e^a</tt> or <tt>e^b</tt> directly. * <P> * Note: This function is just like * {@link cc.mallet.fst.Transducer#sumNegLogProb sumNegLogProb} * in <TT>Transducer</TT>, * except that the logs aren't negated. */ public static double sumLogProb(double a, double b) { if (a == Double.NEGATIVE_INFINITY) return b; else if (b == Double.NEGATIVE_INFINITY) return a; else if (b < a) return a + Math.log(1 + Math.exp(b - a)); else return b + Math.log(1 + Math.exp(a - b)); }
From source file:Main.java
public static double student_c(final double v) { return Math.exp(logGamma((v + 1.0) / 2.0)) / (Math.sqrt(3.141592653589793 * v) * Math.exp(logGamma(v / 2.0))); }
From source file:com.opengamma.analytics.math.statistics.descriptive.LognormalSkewnessFromVolatilityCalculator.java
@Override public Double evaluate(final Double sigma, final Double t) { Validate.notNull(sigma, "sigma"); Validate.notNull(t, "t"); final double y = Math.sqrt(Math.exp(sigma * sigma * t) - 1); return y * (3 + y * y); }