List of usage examples for java.lang Math exp
@HotSpotIntrinsicCandidate public static double exp(double a)
From source file:br.prof.salesfilho.oci.service.ImageDescriptorService.java
/** * @param signal/*w w w .ja v a2 s.c o m*/ * @param kernel Kernel size * @return AutoCorrentropy array */ public double[] autoCorrentropy(double[] signal, double kernel) { //Normalyze //signal = OCIUtils.maxElementArrayNormalyze(signal); double twokSizeSquare = 2 * Math.pow(kernel, 2d); int signal_length = signal.length; double[] autoCorrentropy = new double[signal_length]; double b = 1 / kernel * Math.sqrt(2 * Math.PI); int N = signal_length; for (int m = 0; m < signal_length; m++) { for (int n = m + 1; n < signal_length; n++) { double pow = Math.pow((signal[n] - signal[n - m - 1]), 2); double exp = Math.exp(-pow / twokSizeSquare); double equation = (1d / (N - m + 1d)) * b * exp; autoCorrentropy[m] = autoCorrentropy[m] + equation; } } return autoCorrentropy; }
From source file:org.jfree.chart.demo.XYLogAxesDemo.java
/** * Creates a new demo./*www .j a v a 2 s . co m*/ * * @param title the frame title. */ public XYLogAxesDemo(final String title) { super(title); //Object[][][] data = new Object[3][50][2]; final XYSeries s1 = new XYSeries("Series 1"); final XYSeries s2 = new XYSeries("Series 2"); final XYSeries s3 = new XYSeries("Series 3"); // for (int i = 1; i <= 50; i++) { // s1.add(i, 1000 * Math.pow(i, -2)); // s2.add(i, 1000 * Math.pow(i, -3)); // s3.add(i, 1000 * Math.pow(i, -4)); // } for (int i = 1; i <= 50; i++) { s1.add(i, 10 * Math.exp(i / 5.0)); s2.add(i, 20 * Math.exp(i / 5.0)); s3.add(i, 30 * Math.exp(i / 5.0)); } final XYSeriesCollection dataset = new XYSeriesCollection(); dataset.addSeries(s1); dataset.addSeries(s2); dataset.addSeries(s3); final JFreeChart chart = ChartFactory.createXYLineChart("Log Axis Demo", // chart title "Category", // domain axis label "Value", // range axis label dataset, // data PlotOrientation.VERTICAL, true, // include legend true, false); final XYPlot plot = chart.getXYPlot(); final NumberAxis domainAxis = new NumberAxis("x"); final NumberAxis rangeAxis = new LogarithmicAxis("Log(y)"); plot.setDomainAxis(domainAxis); plot.setRangeAxis(rangeAxis); chart.setBackgroundPaint(Color.white); plot.setOutlinePaint(Color.black); final ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); setContentPane(chartPanel); }
From source file:com.opengamma.analytics.math.interpolation.LogNaturalCubicMonotonicityPreservingInterpolator1D.java
@Override public double firstDerivative(final Interpolator1DDataBundle data, final Double value) { Validate.notNull(value, "value"); Validate.notNull(data, "data bundle"); Validate.isTrue(data instanceof Interpolator1DLogPiecewisePoynomialDataBundle); final Interpolator1DLogPiecewisePoynomialDataBundle polyData = (Interpolator1DLogPiecewisePoynomialDataBundle) data; final DoubleMatrix1D resValue = FUNC.evaluate(polyData.getPiecewisePolynomialResultsWithSensitivity(), value);/* w w w.j av a2 s. c om*/ final DoubleMatrix1D resDerivative = FUNC .differentiate(polyData.getPiecewisePolynomialResultsWithSensitivity(), value); return Math.exp(resValue.getEntry(0)) * resDerivative.getEntry(0); }
From source file:com.itemanalysis.psychometrics.irt.model.IrmGRM.java
public double cumulativeProbability(double theta, double[] iparam, int category, double D) { if (category > maxCategory || category < minCategory) return 0; if (category == minCategory) return 1.0; double a = iparam[0]; double[] s = Arrays.copyOfRange(iparam, 1, iparam.length); double Zk = D * a * (theta - s[category - 1]); double expZk = Math.exp(Zk); double prob = expZk / (1 + expZk); return prob;/*from w w w. ja v a2s .co m*/ }
From source file:edu.snu.leader.spatial.calculator.SigmoidSueurDecisionProbabilityCalculator.java
/** * Calculates k coefficient for the collective movement equations * * @param value// w w w. j ava 2 s . c o m * @return The k coefficient * @see edu.snu.leader.spatial.calculator.AbstractSueurDecisionProbabilityCalculator#calculateK(float) */ @Override protected float calculateK(float value, DecisionType type) { return 2.0f * (1.0f / (1.0f + (float) Math.exp((0.5f - value) * _sigmoidSlopeValue))); }
From source file:geogebra.util.MyMath.java
final public static double beta(double a, double b) { return Math.exp(Beta.logBeta(a, b)); }
From source file:com.opengamma.analytics.financial.model.option.pricing.fourier.IntegratedCIRTimeChangeCharacteristicExponent.java
@Override public ComplexNumber getValue(ComplexNumber u, double t) { if (u.getReal() == 0.0 && u.getImaginary() == 0.0) { return new ComplexNumber(0.0); }/*ww w . j a v a2 s. c om*/ final ComplexNumber ui = multiply(I, u); //handle small lambda properly if (2 * mod(u) * _lambda * _lambda / _kappa / _kappa < 1e-6) { final double d = _theta * t + (1 - _theta) * (1 - Math.exp(-_kappa * t)) / _kappa; return multiply(d, ui); } ComplexNumber temp = subtract(_kappa * _kappa, multiply(2 * _lambda * _lambda, ui)); final ComplexNumber gamma = sqrt(temp); final ComplexNumber gammaHalfT = multiply(gamma, t / 2.0); temp = divide(multiply(2, ui), add(_kappa, divide(gamma, TrigonometricFunctionUtils.tanh(gammaHalfT)))); final ComplexNumber kappaOverGamma = divide(_kappa, gamma); final double power = 2 * _kappa * _theta / _lambda / _lambda; final ComplexNumber res = add( multiply(power, subtract(_kappa * t / 2, getLogCoshSinh(gammaHalfT, kappaOverGamma))), temp); return res; }
From source file:com.opengamma.analytics.math.statistics.distribution.GeneralizedExtremeValueDistribution.java
/** * {@inheritDoc}//from www .java 2s . c om * @throws IllegalArgumentException If $x \not\in$ support */ @Override public double getPDF(final Double x) { Validate.notNull(x); final double t = getT(x); return Math.pow(t, _ksi + 1) * Math.exp(-t) / _sigma; }
From source file:de.mpicbg.knime.hcs.base.utils.MutualInformation.java
public void set_base(Double b) { if (!(b == 2 || b == Math.exp(1))) System.out.println("The logbase is usually choosen to be 2 or e."); if (b < 0) throw new RuntimeException("The logbase has to be a positive Real number"); logbase = b;/*from w ww .j a v a 2 s .c o m*/ }
From source file:gedi.util.math.stat.testing.MantelHaenszelTest.java
/** * Returns this!//from w w w . j a v a2s . c o m * @param table * @return * @throws MathException */ public MantelHaenszelTest compute(TwoByTwoByKTable table) { this.table = table; double delta = table.getDelta(); double yates = correct && (delta >= 0.5) ? 0.5 : 0; double deltayates = delta - yates; stat = deltayates * deltayates / table.getVarianceEstimate(); if (h1 == H1.NOT_EQUAL) pval = stat > 30 ? 0 : (1 - chisq.cumulativeProbability(stat)); else if (h1 == H1.LESS_THAN) pval = norm.cumulativeProbability(Math.signum(delta) * Math.sqrt(stat)); else pval = 1 - norm.cumulativeProbability(Math.signum(delta) * Math.sqrt(stat)); estimate = table.getOddsRatio(); double sd = table.computeSD(); if (h1 == H1.LESS_THAN) { lowerConf = 0; upperConf = estimate * Math.exp(norm.inverseCumulativeProbability(confLevel) * sd); } else if (h1 == H1.GREATER_THAN) { lowerConf = estimate * Math.exp(norm.inverseCumulativeProbability(1 - confLevel) * sd); upperConf = Double.POSITIVE_INFINITY; } else { lowerConf = estimate * Math.exp(norm.inverseCumulativeProbability((1 - confLevel) / 2) * sd); upperConf = estimate * Math.exp(-norm.inverseCumulativeProbability((1 - confLevel) / 2) * sd); } return this; }