Java tutorial
/** * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies * * Please see distribution for license. */ package com.opengamma.analytics.financial.model.option.pricing.tree; import org.apache.commons.lang.Validate; import com.opengamma.analytics.financial.model.option.definition.GeneralLogNormalOptionDataBundle; import com.opengamma.analytics.math.function.Function1D; import com.opengamma.analytics.math.rootfinding.BracketRoot; import com.opengamma.analytics.math.rootfinding.BrentSingleRootFinder; import com.opengamma.analytics.math.rootfinding.RealSingleRootFinder; import com.opengamma.util.tuple.DoublesPair; /** * Builds a binomial tree where the nodes are set to locally match a log-normal process. The process that the tree is emulating is of the form df/f = mu(f,t)dt + sigma(f,t)dw. * From a node at (f,t) the two daughter nodes f+ and f- (at time t + dt) are set such that p*(1-p)*(ln(f+/f-))^2 = dt*sigma(f,t)^2, where p is the probability of reaching f+ from f. * The forwarding condition is p*f+ + (1-p)*f- = f*exp(mu(f,t)*dt). This is adapted from the paper Derman and Kani, The Volatility Smile and Its Implied Tree * @param <T> A GeneralLogNormalOptionDataBundle or anything that extends it */ public class LogNormalBinomialTreeBuilder<T extends GeneralLogNormalOptionDataBundle> extends BinomialTreeBuilder<T> { private static final double EPS = 1e-8; private static final RealSingleRootFinder s_root = new BrentSingleRootFinder(); private static BracketRoot s_bracketRoot = new BracketRoot(); @Override protected double[] getForwards(double[] spots, T data, double t, double dt) { int n = spots.length; double[] forwards = new double[n]; for (int i = 0; i < n; i++) { double drift = data.getLocalDrift(spots[i], t); forwards[i] = spots[i] * Math.exp(drift * dt); } return forwards; } @Override protected DoublesPair getCentralNodePair(double dt, double sigma, double forward, double centreLevel) { Function1D<Double, Double> func = new CentreNode(dt, sigma, forward, centreLevel); double[] limits = s_bracketRoot.getBracketedPoints(func, forward, forward * Math.exp(sigma * Math.sqrt(dt))); double upper = s_root.getRoot(func, limits[0], limits[1]); double lower = centreLevel * centreLevel / upper; return new DoublesPair(lower, upper); } @Override protected double getNextHigherNode(double dt, double sigma, double forward, double lowerNode) { Function1D<Double, Double> func = new UpperNodes(dt, sigma, forward, lowerNode); double fTry = forward * Math.exp(sigma * Math.sqrt(dt)); //ensure we do not get p = 1 and thus a divide by zero double[] limits = s_bracketRoot.getBracketedPoints(func, (forward - lowerNode) / 0.6 + lowerNode, (forward - lowerNode) / 0.4 + lowerNode, forward * (1 + EPS), 10 * fTry); return s_root.getRoot(func, limits[0], limits[1]); } @Override protected double getNextLowerNode(double dt, double sigma, double forward, double higherNode) { if (forward == 0.0) { return 0.0; } Function1D<Double, Double> func = new LowerNodes(dt, sigma, forward, higherNode); double[] limits = s_bracketRoot.getBracketedPoints(func, forward * Math.exp(-sigma * Math.sqrt(dt)), forward); return s_root.getRoot(func, limits[0], limits[1]); } /** * The root of this function gives the next node above the currently know one */ private class UpperNodes extends Function1D<Double, Double> { private double _rootdt; private double _sigma; private double _f; private double _s; public UpperNodes(final double dt, final double sigma, final double forward, final double s) { _rootdt = Math.sqrt(dt); _sigma = sigma; _f = forward; _s = s; } @Override public Double evaluate(Double x) { double p = (_f - _s) / (x - _s); double res = _s * Math.exp(_rootdt * _sigma / Math.sqrt(p * (1 - p))) - x; return res; } } private class LowerNodes extends Function1D<Double, Double> { private double _rootdt; private double _sigma; private double _f; private double _s; public LowerNodes(final double dt, final double sigma, final double forward, final double s) { _rootdt = Math.sqrt(dt); _sigma = sigma; _f = forward; _s = s; } @Override public Double evaluate(Double x) { double p = (_f - x) / (_s - x); double res = _s * Math.exp(-_rootdt * _sigma / Math.sqrt(p * (1 - p))) - x; return res; } } private class CentreNode extends Function1D<Double, Double> { private double _rootdt; private double _sigma; private double _f; private double _spot; public CentreNode(final double dt, final double sigma, final double forward, final double spot) { _rootdt = Math.sqrt(dt); _sigma = sigma; _f = forward; _spot = spot; } @Override public Double evaluate(Double x) { double p; if (_f == _spot) { p = _f / (x + _f); } else { Validate.isTrue(x != _spot, "invalide x"); p = (x * _f - _spot * _spot) / (x * x - _spot * _spot); } double res = _spot * _spot * Math.exp(_rootdt * _sigma / Math.sqrt(p * (1 - p))) - x * x; return res; } } }