Java tutorial
// //CLASS //ExBackgroundColor - illustrate use of colored Backgrounds // //LESSON //Add a Background node to set the background color. // //SEE ALSO //ExBackgroundImage //ExBackgroundGeometry // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // import java.applet.Applet; import java.awt.AWTEvent; import java.awt.BorderLayout; import java.awt.CheckboxMenuItem; import java.awt.Component; import java.awt.Cursor; import java.awt.Frame; import java.awt.Menu; import java.awt.MenuBar; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.InputEvent; import java.awt.event.ItemEvent; import java.awt.event.ItemListener; import java.awt.event.MouseEvent; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import java.io.File; import java.util.Enumeration; import java.util.EventListener; import javax.media.j3d.AmbientLight; import javax.media.j3d.Appearance; import javax.media.j3d.Background; import javax.media.j3d.Behavior; import javax.media.j3d.BoundingSphere; import javax.media.j3d.BranchGroup; import javax.media.j3d.Canvas3D; import javax.media.j3d.DirectionalLight; import javax.media.j3d.GeometryArray; import javax.media.j3d.Group; import javax.media.j3d.IndexedQuadArray; import javax.media.j3d.IndexedTriangleStripArray; import javax.media.j3d.Light; import javax.media.j3d.Link; import javax.media.j3d.Material; import javax.media.j3d.Shape3D; import javax.media.j3d.SharedGroup; import javax.media.j3d.Texture; import javax.media.j3d.TextureAttributes; import javax.media.j3d.Transform3D; import javax.media.j3d.TransformGroup; import javax.media.j3d.WakeupCriterion; import javax.media.j3d.WakeupOnAWTEvent; import javax.media.j3d.WakeupOnElapsedFrames; import javax.media.j3d.WakeupOr; import javax.vecmath.Color3f; import javax.vecmath.Matrix3f; import javax.vecmath.Matrix4d; import javax.vecmath.Point3d; import javax.vecmath.Point3f; import javax.vecmath.Vector3d; import javax.vecmath.Vector3f; import com.sun.j3d.utils.geometry.Primitive; import com.sun.j3d.utils.image.TextureLoader; import com.sun.j3d.utils.universe.PlatformGeometry; import com.sun.j3d.utils.universe.SimpleUniverse; import com.sun.j3d.utils.universe.Viewer; import com.sun.j3d.utils.universe.ViewingPlatform; public class ExBackgroundColor extends Java3DFrame { //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- // // Nodes (updated via menu) // private Background background = null; // // Build scene // public Group buildScene() { // Get the current color Color3f color = (Color3f) colors[currentColor].value; // Turn off the example headlight setHeadlightEnable(false); // Default to walk navigation setNavigationType(Walk); // Create the scene group Group scene = new Group(); // BEGIN EXAMPLE TOPIC // Create application bounds BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Set the background color and its application bounds background = new Background(); background.setColor(color); background.setCapability(Background.ALLOW_COLOR_WRITE); background.setApplicationBounds(worldBounds); scene.addChild(background); // END EXAMPLE TOPIC // Build foreground geometry scene.addChild(new TowerScene(this)); return scene; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- // // Main // public static void main(String[] args) { ExBackgroundColor ex = new ExBackgroundColor(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } // Color menu choices private NameValue[] colors = { new NameValue("White", White), new NameValue("Dark Gray", DarkGray), new NameValue("Black", Black), new NameValue("Dark Red", DarkRed), new NameValue("Dark Green", DarkGreen), new NameValue("Dark Blue", DarkBlue), }; private int currentColor = 2; private CheckboxMenu colorMenu = null; // // Initialize the GUI (application and applet) // public void initialize(String[] args) { // Initialize the window, menubar, etc. super.initialize(args); exampleFrame.setTitle("Java 3D Background Color Example"); // // Add a menubar menu to change node parameters // Color --> // Menu m = new Menu("Background"); colorMenu = new CheckboxMenu("Color", colors, currentColor, this); m.add(colorMenu); exampleMenuBar.add(m); } // // Handle checkboxes and menu choices // public void checkboxChanged(CheckboxMenu menu, int check) { if (menu == colorMenu) { // Change the light color currentColor = check; Color3f color = (Color3f) colors[check].value; background.setColor(color); return; } // Handle all other checkboxes super.checkboxChanged(menu, check); } } // //CLASS //TowerScene - shapes and lights for a scene with towers // //DESCRIPTION //This class builds a scene containing a cratered surface, a set of //stone towers, plus appropriate lighting. The scene is used in several //of the examples to provide content to affect with lights, background //colors and images, and so forth. // //SEE ALSO //ExBackgroundColor //ExBackgroundImage //ExBackgroundGeometry // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // class TowerScene extends Group { private static final double[][] craters = { // x,z,radius are in a normalized -1.0 to 1.0 space // x z radius depth { 0.0, 0.0, 0.7, 0.20 }, { 0.3, 0.3, 0.5, 0.20 }, { -0.3, 0.1, 0.6, 0.20 }, { -0.2, 0.4, 0.4, 0.20 }, { -0.9, -0.9, 0.5, 0.20 }, { 0.4, 0.5, 0.3, 0.10 }, { 0.9, -0.2, 0.4, 0.10 }, { -0.8, 0.1, 0.2, 0.10 }, { 0.2, 0.7, 0.3, 0.20 }, { 0.5, -0.5, 0.21, 0.20 }, { 0.8, -0.8, 0.16, 0.10 }, { -0.3, 0.7, 0.23, 0.20 }, { 0.5, 0.5, 0.22, 0.10 }, { -0.7, 0.8, 0.15, 0.10 }, { -0.5, -0.3, 0.22, 0.10 }, { 0.2, 0.2, 0.15, 0.10 }, { 0.1, 0.8, 0.25, 0.20 }, { 0.4, 0.9, 0.28, 0.09 }, { 0.9, -0.1, 0.23, 0.10 }, { 0.1, -0.0, 0.33, 0.08 }, { 0.1, -0.9, 0.23, 0.20 }, { -1.0, 0.8, 0.13, 0.15 }, { -0.9, 0.7, 0.10, 0.15 }, { -0.2, 0.1, 0.10, 0.16 }, { 1.1, 1.0, 0.12, 0.15 }, { 0.9, 0.5, 0.13, 0.14 }, { -0.1, -0.1, 0.14, 0.15 }, { -0.5, -0.5, 0.10, 0.13 }, { 0.1, -0.4, 0.10, 0.15 }, { -0.4, -1.0, 0.25, 0.15 }, { 0.4, 1.0, 0.25, 0.15 }, }; public TowerScene(Component observer) { BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Add a few lights AmbientLight ambient = new AmbientLight(); ambient.setEnable(true); ambient.setColor(new Color3f(0.2f, 0.2f, 0.2f)); ambient.setInfluencingBounds(worldBounds); addChild(ambient); DirectionalLight dir1 = new DirectionalLight(); dir1.setEnable(true); dir1.setColor(new Color3f(1.0f, 0.15f, 0.15f)); dir1.setDirection(new Vector3f(0.8f, -0.35f, -0.5f)); dir1.setInfluencingBounds(worldBounds); addChild(dir1); DirectionalLight dir2 = new DirectionalLight(); dir2.setEnable(true); dir2.setColor(new Color3f(0.15f, 0.15f, 1.0f)); dir2.setDirection(new Vector3f(-0.7f, -0.35f, 0.5f)); dir2.setInfluencingBounds(worldBounds); addChild(dir2); // Load textures TextureLoader texLoader = new TextureLoader("moon5.jpg", observer); Texture moon = texLoader.getTexture(); if (moon == null) System.err.println("Cannot load moon5.jpg texture"); else { moon.setBoundaryModeS(Texture.WRAP); moon.setBoundaryModeT(Texture.WRAP); moon.setMinFilter(Texture.NICEST); moon.setMagFilter(Texture.NICEST); moon.setMipMapMode(Texture.BASE_LEVEL); moon.setEnable(true); } texLoader = new TextureLoader("stonebrk2.jpg", observer); Texture stone = texLoader.getTexture(); if (stone == null) System.err.println("Cannot load stonebrk2.jpg texture"); else { stone.setBoundaryModeS(Texture.WRAP); stone.setBoundaryModeT(Texture.WRAP); stone.setMinFilter(Texture.NICEST); stone.setMagFilter(Texture.NICEST); stone.setMipMapMode(Texture.BASE_LEVEL); stone.setEnable(true); } // // Build a rough terrain // Appearance moonApp = new Appearance(); Material moonMat = new Material(); moonMat.setAmbientColor(0.5f, 0.5f, 0.5f); moonMat.setDiffuseColor(1.0f, 1.0f, 1.0f); moonMat.setSpecularColor(0.0f, 0.0f, 0.0f); moonApp.setMaterial(moonMat); TextureAttributes moonTexAtt = new TextureAttributes(); moonTexAtt.setTextureMode(TextureAttributes.MODULATE); moonTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); moonApp.setTextureAttributes(moonTexAtt); if (moon != null) moonApp.setTexture(moon); CraterGrid grid = new CraterGrid(50, 50, // grid dimensions 1.0, 1.0, // grid spacing 4.0, // height exageration factor craters, // grid elevations moonApp); // grid appearance addChild(grid); // // Build several towers on the terrain // SharedGroup tower = new SharedGroup(); Appearance towerApp = new Appearance(); Material towerMat = new Material(); towerMat.setAmbientColor(0.6f, 0.6f, 0.6f); towerMat.setDiffuseColor(1.0f, 1.0f, 1.0f); towerMat.setSpecularColor(0.0f, 0.0f, 0.0f); towerApp.setMaterial(towerMat); Transform3D tr = new Transform3D(); tr.setScale(new Vector3d(4.0, 4.0, 1.0)); TextureAttributes towerTexAtt = new TextureAttributes(); towerTexAtt.setTextureMode(TextureAttributes.MODULATE); towerTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); towerTexAtt.setTextureTransform(tr); towerApp.setTextureAttributes(towerTexAtt); if (stone != null) towerApp.setTexture(stone); Arch towerShape = new Arch(0.0, // start Phi 1.571, // end Phi 2, // nPhi 0.0, // start Theta Math.PI * 2.0, // end Theta 5, // nTheta 3.0, // start radius 8.0, // end radius 0.0, // start phi thickness 0.0, // end phi thickness towerApp); // appearance tower.addChild(towerShape); // Place towers Matrix3f rot = new Matrix3f(); rot.setIdentity(); TransformGroup tg = new TransformGroup(new Transform3D(rot, new Vector3d(2.0, -3.0, -8.0), 1.0)); tg.addChild(new Link(tower)); addChild(tg); tg = new TransformGroup(new Transform3D(rot, new Vector3d(-1.0, -3.0, -6.0), 0.5)); tg.addChild(new Link(tower)); addChild(tg); tg = new TransformGroup(new Transform3D(rot, new Vector3d(5.0, -3.0, -6.0), 0.75)); tg.addChild(new Link(tower)); addChild(tg); tg = new TransformGroup(new Transform3D(rot, new Vector3d(1.0, -3.0, -3.0), 0.35)); tg.addChild(new Link(tower)); addChild(tg); } } // //CLASS //Arch - generalized arch // //DESCRIPTION //This class builds a generalized arch where incoming parameters //specify the angle range in theta (around the equator of a sphere), //the angle range in phi (north-south), the number of subdivisions //in theta and phi, and optionally radii and outer-to-inner wall //thickness variations as phi varies from its starting value to //its ending value. If the thicknesses are 0.0, then only an outer //surface is created. // //Using this class, you can create spheres with or without inner //surfaces, hemisphers, quarter spheres, and arches stretched or //compressed vertically. // //This is probably not as general as it could be, but it was enough //for the purposes at hand. // //SEE ALSO //ModernFire // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // // class Arch extends Group { // The shape private Shape3D arch = null; // Construct an arch public Arch() { // Default to a sphere this(0.0, Math.PI / 2.0, 9, 0.0, Math.PI, 17, 1.0, 1.0, 0.0, 0.0, new Appearance()); } public Arch(Appearance app) { // Default to a sphere this(0.0, Math.PI / 2.0, 9, 0.0, Math.PI, 17, 1.0, 1.0, 0.0, 0.0, app); } public Arch(double startPhi, double endPhi, int nPhi, double startTheta, double endTheta, int nTheta, Appearance app) { // Default to constant radius, no thickness this(startPhi, endPhi, nPhi, startTheta, endTheta, nTheta, 1.0, 1.0, 0.0, 0.0, app); } public Arch(double startPhi, double endPhi, int nPhi, double startTheta, double endTheta, int nTheta, double startPhiRadius, double endPhiRadius, double startPhiThickness, double endPhiThickness, Appearance app) { double theta, phi, radius, radius2, thickness; double x, y, z; double[] xyz = new double[3]; float[] norm = new float[3]; float[] tex = new float[3]; // Compute some values for our looping double deltaTheta = (endTheta - startTheta) / (double) (nTheta - 1); double deltaPhi = (endPhi - startPhi) / (double) (nPhi - 1); double deltaTexX = 1.0 / (double) (nTheta - 1); double deltaTexY = 1.0 / (double) (nPhi - 1); double deltaPhiRadius = (endPhiRadius - startPhiRadius) / (double) (nPhi - 1); double deltaPhiThickness = (endPhiThickness - startPhiThickness) / (double) (nPhi - 1); boolean doThickness = true; if (startPhiThickness == 0.0 && endPhiThickness == 0.0) doThickness = false; // Create geometry int vertexCount = nTheta * nPhi; if (doThickness) vertexCount *= 2; int indexCount = (nTheta - 1) * (nPhi - 1) * 4; // Outer surface if (doThickness) { indexCount *= 2; // plus inner surface indexCount += (nPhi - 1) * 4 * 2; // plus left & right edges } IndexedQuadArray polys = new IndexedQuadArray(vertexCount, GeometryArray.COORDINATES | GeometryArray.NORMALS | GeometryArray.TEXTURE_COORDINATE_2, indexCount); // // Compute coordinates, normals, and texture coordinates // theta = startTheta; tex[0] = 0.0f; int index = 0; for (int i = 0; i < nTheta; i++) { phi = startPhi; radius = startPhiRadius; thickness = startPhiThickness; tex[1] = 0.0f; for (int j = 0; j < nPhi; j++) { norm[0] = (float) (Math.cos(phi) * Math.cos(theta)); norm[1] = (float) (Math.sin(phi)); norm[2] = (float) (-Math.cos(phi) * Math.sin(theta)); xyz[0] = radius * norm[0]; xyz[1] = radius * norm[1]; xyz[2] = radius * norm[2]; polys.setCoordinate(index, xyz); polys.setNormal(index, norm); polys.setTextureCoordinate(index, tex); index++; if (doThickness) { radius2 = radius - thickness; xyz[0] = radius2 * norm[0]; xyz[1] = radius2 * norm[1]; xyz[2] = radius2 * norm[2]; norm[0] *= -1.0f; norm[1] *= -1.0f; norm[2] *= -1.0f; polys.setCoordinate(index, xyz); polys.setNormal(index, norm); polys.setTextureCoordinate(index, tex); index++; } phi += deltaPhi; radius += deltaPhiRadius; thickness += deltaPhiThickness; tex[1] += deltaTexY; } theta += deltaTheta; tex[0] += deltaTexX; } // // Compute coordinate indexes // (also used as normal and texture indexes) // index = 0; int phiRow = nPhi; int phiCol = 1; if (doThickness) { phiRow += nPhi; phiCol += 1; } int[] indices = new int[indexCount]; // Outer surface int n; for (int i = 0; i < nTheta - 1; i++) { for (int j = 0; j < nPhi - 1; j++) { n = i * phiRow + j * phiCol; indices[index + 0] = n; indices[index + 1] = n + phiRow; indices[index + 2] = n + phiRow + phiCol; indices[index + 3] = n + phiCol; index += 4; } } // Inner surface if (doThickness) { for (int i = 0; i < nTheta - 1; i++) { for (int j = 0; j < nPhi - 1; j++) { n = i * phiRow + j * phiCol; indices[index + 0] = n + 1; indices[index + 1] = n + phiCol + 1; indices[index + 2] = n + phiRow + phiCol + 1; indices[index + 3] = n + phiRow + 1; index += 4; } } } // Edges if (doThickness) { for (int j = 0; j < nPhi - 1; j++) { n = j * phiCol; indices[index + 0] = n; indices[index + 1] = n + phiCol; indices[index + 2] = n + phiCol + 1; indices[index + 3] = n + 1; index += 4; } for (int j = 0; j < nPhi - 1; j++) { n = (nTheta - 1) * phiRow + j * phiCol; indices[index + 0] = n; indices[index + 1] = n + 1; indices[index + 2] = n + phiCol + 1; indices[index + 3] = n + phiCol; index += 4; } } polys.setCoordinateIndices(0, indices); polys.setNormalIndices(0, indices); polys.setTextureCoordinateIndices(0, indices); // // Build a shape // arch = new Shape3D(); arch.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE); arch.setGeometry(polys); arch.setAppearance(app); addChild(arch); } public void setAppearance(Appearance app) { if (arch != null) arch.setAppearance(app); } } // //CLASS //ElevationGrid - a 3D terrain grid built from a list of heights // //DESCRIPTION //This class creates a 3D terrain on a grid whose X and Z dimensions, //and row/column spacing are parameters, along with a list of heights //(elevations), one per grid row/column pair. // class ElevationGrid extends Primitive { // Parameters protected int xDimension = 0, zDimension = 0; protected double xSpacing = 0.0, zSpacing = 0.0; protected double[] heights = null; // 3D nodes private Appearance mainAppearance = null; private Shape3D shape = null; private IndexedTriangleStripArray tristrip = null; // // Construct an elevation grid // public ElevationGrid() { xDimension = 2; zDimension = 2; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim) { xDimension = xDim; zDimension = zDim; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = 1.0; zSpacing = 1.0; mainAppearance = app; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = null; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = app; zeroHeights(); rebuild(); } public ElevationGrid(int xDim, int zDim, double[] h) { this(xDim, zDim, 1.0, 1.0, h, null); } public ElevationGrid(int xDim, int zDim, double[] h, Appearance app) { this(xDim, zDim, 1.0, 1.0, h, app); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, double[] h) { this(xDim, zDim, xSpace, zSpace, h, null); } public ElevationGrid(int xDim, int zDim, double xSpace, double zSpace, double[] h, Appearance app) { xDimension = xDim; zDimension = zDim; xSpacing = xSpace; zSpacing = zSpace; mainAppearance = app; if (h == null) zeroHeights(); else { heights = new double[h.length]; for (int i = 0; i < h.length; i++) heights[i] = h[i]; } rebuild(); } private void zeroHeights() { int n = xDimension * zDimension; heights = new double[n]; for (int i = 0; i < n; i++) heights[i] = 0.0; } private void rebuild() { // Build a shape if (shape == null) { shape = new Shape3D(); shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE); shape.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE); shape.setAppearance(mainAppearance); addChild(shape); } else { shape.setAppearance(mainAppearance); } if (xDimension < 2 || zDimension < 2 || heights == null || heights.length < 4) { tristrip = null; shape.setGeometry(null); return; } // Create a list of coordinates, one per grid row/column double[] coordinates = new double[xDimension * zDimension * 3]; double x, z; int n = 0, k = 0; z = ((double) (zDimension - 1)) * zSpacing / 2.0; // start at front edge for (int i = 0; i < zDimension; i++) { x = -((double) (xDimension - 1)) * xSpacing / 2.0;// start at left // edge for (int j = 0; j < xDimension; j++) { coordinates[n++] = x; coordinates[n++] = heights[k++]; coordinates[n++] = z; x += xSpacing; } z -= zSpacing; } // Create a list of normals, one per grid row/column float[] normals = new float[xDimension * zDimension * 3]; Vector3f one = new Vector3f(0.0f, 0.0f, 0.0f); Vector3f two = new Vector3f(0.0f, 0.0f, 0.0f); Vector3f norm = new Vector3f(0.0f, 0.0f, 0.0f); n = 0; k = 0; for (int i = 0; i < zDimension - 1; i++) { for (int j = 0; j < xDimension - 1; j++) { // Vector to right in X one.set((float) xSpacing, (float) (heights[k + 1] - heights[k]), 0.0f); // Vector back in Z two.set(0.0f, (float) (heights[k + xDimension] - heights[k]), (float) -zSpacing); // Cross them to get the normal norm.cross(one, two); normals[n++] = norm.x; normals[n++] = norm.y; normals[n++] = norm.z; k++; } // Last normal in row is a copy of the previous one normals[n] = normals[n - 3]; // X normals[n + 1] = normals[n - 2]; // Y normals[n + 2] = normals[n - 1]; // Z n += 3; k++; } // Last row of normals is a copy of the previous row for (int j = 0; j < xDimension; j++) { normals[n] = normals[n - xDimension * 3]; // X normals[n + 1] = normals[n - xDimension * 3 + 1]; // Y normals[n + 2] = normals[n - xDimension * 3 + 2]; // Z n += 3; } // Create a list of texture coordinates, one per grid row/column float[] texcoordinates = new float[xDimension * zDimension * 2]; float deltaS = 1.0f / (float) (xDimension - 1); float deltaT = 1.0f / (float) (zDimension - 1); float s = 0.0f; float t = 0.0f; n = 0; for (int i = 0; i < zDimension; i++) { s = 0.0f; for (int j = 0; j < xDimension; j++) { texcoordinates[n++] = s; texcoordinates[n++] = t; s += deltaS; } t += deltaT; } // Create a list of triangle strip indexes. Each strip goes // down one row (X direction) of the elevation grid. int[] indexes = new int[xDimension * (zDimension - 1) * 2]; int[] stripCounts = new int[zDimension - 1]; n = 0; k = 0; for (int i = 0; i < zDimension - 1; i++) { stripCounts[i] = xDimension * 2; for (int j = 0; j < xDimension; j++) { indexes[n++] = k + xDimension; indexes[n++] = k; k++; } } // Create geometry for collection of triangle strips, one // strip per row of the elevation grid tristrip = new IndexedTriangleStripArray(coordinates.length, GeometryArray.COORDINATES | GeometryArray.NORMALS | GeometryArray.TEXTURE_COORDINATE_2, indexes.length, stripCounts); tristrip.setCoordinates(0, coordinates); tristrip.setNormals(0, normals); tristrip.setTextureCoordinates(0, texcoordinates); tristrip.setCoordinateIndices(0, indexes); tristrip.setNormalIndices(0, indexes); tristrip.setTextureCoordinateIndices(0, indexes); // Set the geometry for the shape shape.setGeometry(tristrip); } // // Control the appearance // public void setAppearance(Appearance app) { mainAppearance = app; if (shape != null) shape.setAppearance(mainAppearance); } // // Control grid parameters // public void setHeights(double[] h) { if (h == null) zeroHeights(); else { heights = new double[h.length]; for (int i = 0; i < h.length; i++) heights[i] = h[i]; } rebuild(); } public double[] getHeights() { return heights; } public void setXDimension(int xDim) { xDimension = xDim; rebuild(); } public int getXDimension() { return xDimension; } public void setZDimension(int zDim) { zDimension = zDim; rebuild(); } public int getZDimension() { return zDimension; } public void setXSpacing(double xSpace) { xSpacing = xSpace; rebuild(); } public double getXSpacing() { return xSpacing; } public void setZSpacing(double zSpace) { zSpacing = zSpace; rebuild(); } public double getZSpacing() { return zSpacing; } // // Provide info on the shape and geometry // public Shape3D getShape(int partid) { return shape; } public int getNumTriangles() { return xDimension * zDimension * 2; } public int getNumVertices() { return xDimension * zDimension; } /* * (non-Javadoc) * * @see com.sun.j3d.utils.geometry.Primitive#getAppearance(int) */ public Appearance getAppearance(int arg0) { // TODO Auto-generated method stub return null; } } // //CLASS //CraterGrid - a 3D terrain grid built from a list of heights // //DESCRIPTION //This class creates a 3D terrain on a grid whose X and Z dimensions, //and row/column spacing are parameters, along with a list of heights //(elevations), one per grid row/column pair. // class CraterGrid extends ElevationGrid { // Parameters double[][] craters = null; double exagerationFactor = 1.0; // 3D nodes private Shape3D shape = null; private IndexedTriangleStripArray tristrip = null; // // Construct a crater grid // public CraterGrid() { super(); craters = null; } public CraterGrid(int xDim, int zDim, double[][] craters, Appearance app) { this(xDim, zDim, 1.0, 1.0, 1.0, craters, app); } public CraterGrid(int xDim, int zDim, double xSpace, double zSpace, double exagerate, double[][] crat, Appearance app) { super(xDim, zDim, xSpace, zSpace, null, app); exagerationFactor = exagerate; if (crat == null) craters = null; else { craters = new double[crat.length][4]; for (int i = 0; i < crat.length; i++) { craters[i][0] = crat[i][0]; craters[i][1] = crat[i][1]; craters[i][2] = crat[i][2]; craters[i][3] = crat[i][3]; } } computeHeights(); } private void computeHeights() { if (craters == null) return; double[] high = new double[xDimension * zDimension]; int n = 0; double xdelta = 2.0 / (double) xDimension; double zdelta = 2.0 / (double) zDimension; double x, z, dx, dz; double angle, distance; // Compute heights z = 1.0; for (int i = 0; i < zDimension; i++) { x = -1.0; for (int j = 0; j < xDimension; j++) { // Compute a distance to the center of each crater. // If that distance is <= the radius, drop the height // by the crater's depth. Sum across all craters // within range to get the height at this grid point. high[n] = 0.0; for (int k = 0; k < craters.length; k++) { dx = craters[k][0] - x; dz = craters[k][1] - z; distance = Math.sqrt(dx * dx + dz * dz); if (distance > craters[k][2]) continue; high[n] -= exagerationFactor * craters[k][3]; } n++; x += xdelta; } z -= zdelta; } setHeights(high); } // // Control grid parameters // public void setCraters(double[][] crat) { craters = new double[crat.length][4]; for (int i = 0; i < crat.length; i++) { craters[i][0] = crat[i][0]; craters[i][1] = crat[i][1]; craters[i][2] = crat[i][2]; craters[i][3] = crat[i][3]; } computeHeights(); } public void getCraters(double[][] crat) { for (int i = 0; i < craters.length; i++) { crat[i][0] = craters[i][0]; crat[i][1] = craters[i][1]; crat[i][2] = craters[i][2]; crat[i][3] = craters[i][3]; } } public void setExageration(double exagerate) { exagerationFactor = exagerate; computeHeights(); } public double getExageration() { return exagerationFactor; } } /** * The Example class is a base class extended by example applications. The class * provides basic features to create a top-level frame, add a menubar and * Canvas3D, build the universe, set up "examine" and "walk" style navigation * behaviors, and provide hooks so that subclasses can add 3D content to the * example's universe. * <P> * Using this Example class simplifies the construction of example applications, * enabling the author to focus upon 3D content and not the busywork of creating * windows, menus, and universes. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class Java3DFrame extends Applet implements WindowListener, ActionListener, ItemListener, CheckboxMenuListener { // Navigation types public final static int Walk = 0; public final static int Examine = 1; // Should the scene be compiled? private boolean shouldCompile = true; // GUI objects for our subclasses protected Java3DFrame example = null; protected Frame exampleFrame = null; protected MenuBar exampleMenuBar = null; protected Canvas3D exampleCanvas = null; protected TransformGroup exampleViewTransform = null; protected TransformGroup exampleSceneTransform = null; protected boolean debug = false; // Private GUI objects and state private boolean headlightOnOff = true; private int navigationType = Examine; private CheckboxMenuItem headlightMenuItem = null; private CheckboxMenuItem walkMenuItem = null; private CheckboxMenuItem examineMenuItem = null; private DirectionalLight headlight = null; private ExamineViewerBehavior examineBehavior = null; private WalkViewerBehavior walkBehavior = null; //-------------------------------------------------------------- // ADMINISTRATION //-------------------------------------------------------------- /** * The main program entry point when invoked as an application. Each example * application that extends this class must define their own main. * * @param args * a String array of command-line arguments */ public static void main(String[] args) { Java3DFrame ex = new Java3DFrame(); ex.initialize(args); ex.buildUniverse(); ex.showFrame(); } /** * Constructs a new Example object. * * @return a new Example that draws no 3D content */ public Java3DFrame() { // Do nothing } /** * Initializes the application when invoked as an applet. */ public void init() { // Collect properties into String array String[] args = new String[2]; // NOTE: to be done still... this.initialize(args); this.buildUniverse(); this.showFrame(); // NOTE: add something to the browser page? } /** * Initializes the Example by parsing command-line arguments, building an * AWT Frame, constructing a menubar, and creating the 3D canvas. * * @param args * a String array of command-line arguments */ protected void initialize(String[] args) { example = this; // Parse incoming arguments parseArgs(args); // Build the frame if (debug) System.err.println("Building GUI..."); exampleFrame = new Frame(); exampleFrame.setSize(640, 480); exampleFrame.setTitle("Java 3D Example"); exampleFrame.setLayout(new BorderLayout()); // Set up a close behavior exampleFrame.addWindowListener(this); // Create a canvas exampleCanvas = new Canvas3D(null); exampleCanvas.setSize(630, 460); exampleFrame.add("Center", exampleCanvas); // Build the menubar exampleMenuBar = this.buildMenuBar(); exampleFrame.setMenuBar(exampleMenuBar); // Pack exampleFrame.pack(); exampleFrame.validate(); // exampleFrame.setVisible( true ); } /** * Parses incoming command-line arguments. Applications that subclass this * class may override this method to support their own command-line * arguments. * * @param args * a String array of command-line arguments */ protected void parseArgs(String[] args) { for (int i = 0; i < args.length; i++) { if (args[i].equals("-d")) debug = true; } } //-------------------------------------------------------------- // SCENE CONTENT //-------------------------------------------------------------- /** * Builds the 3D universe by constructing a virtual universe (via * SimpleUniverse), a view platform (via SimpleUniverse), and a view (via * SimpleUniverse). A headlight is added and a set of behaviors initialized * to handle navigation types. */ protected void buildUniverse() { // // Create a SimpleUniverse object, which builds: // // - a Locale using the given hi-res coordinate origin // // - a ViewingPlatform which in turn builds: // - a MultiTransformGroup with which to move the // the ViewPlatform about // // - a ViewPlatform to hold the view // // - a BranchGroup to hold avatar geometry (if any) // // - a BranchGroup to hold view platform // geometry (if any) // // - a Viewer which in turn builds: // - a PhysicalBody which characterizes the user's // viewing preferences and abilities // // - a PhysicalEnvironment which characterizes the // user's rendering hardware and software // // - a JavaSoundMixer which initializes sound // support within the 3D environment // // - a View which renders the scene into a Canvas3D // // All of these actions could be done explicitly, but // using the SimpleUniverse utilities simplifies the code. // if (debug) System.err.println("Building scene graph..."); SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate // for the origin - // use default 1, // Number of transforms in MultiTransformGroup exampleCanvas, // Canvas3D into which to draw null); // URL for user configuration file - use defaults // // Get the viewer and create an audio device so that // sound will be enabled in this content. // Viewer viewer = universe.getViewer(); viewer.createAudioDevice(); // // Get the viewing platform created by SimpleUniverse. // From that platform, get the inner-most TransformGroup // in the MultiTransformGroup. That inner-most group // contains the ViewPlatform. It is this inner-most // TransformGroup we need in order to: // // - add a "headlight" that always aims forward from // the viewer // // - change the viewing direction in a "walk" style // // The inner-most TransformGroup's transform will be // changed by the walk behavior (when enabled). // ViewingPlatform viewingPlatform = universe.getViewingPlatform(); exampleViewTransform = viewingPlatform.getViewPlatformTransform(); // // Create a "headlight" as a forward-facing directional light. // Set the light's bounds to huge. Since we want the light // on the viewer's "head", we need the light within the // TransformGroup containing the ViewPlatform. The // ViewingPlatform class creates a handy hook to do this // called "platform geometry". The PlatformGeometry class is // subclassed off of BranchGroup, and is intended to contain // a description of the 3D platform itself... PLUS a headlight! // So, to add the headlight, create a new PlatformGeometry group, // add the light to it, then add that platform geometry to the // ViewingPlatform. // BoundingSphere allBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100000.0); PlatformGeometry pg = new PlatformGeometry(); headlight = new DirectionalLight(); headlight.setColor(White); headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f)); headlight.setInfluencingBounds(allBounds); headlight.setCapability(Light.ALLOW_STATE_WRITE); pg.addChild(headlight); viewingPlatform.setPlatformGeometry(pg); // // Create the 3D content BranchGroup, containing: // // - a TransformGroup who's transform the examine behavior // will change (when enabled). // // - 3D geometry to view // // Build the scene root BranchGroup sceneRoot = new BranchGroup(); // Build a transform that we can modify exampleSceneTransform = new TransformGroup(); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND); // // Build the scene, add it to the transform, and add // the transform to the scene root // if (debug) System.err.println(" scene..."); Group scene = this.buildScene(); exampleSceneTransform.addChild(scene); sceneRoot.addChild(exampleSceneTransform); // // Create a pair of behaviors to implement two navigation // types: // // - "examine": a style where mouse drags rotate about // the scene's origin as if it is an object under // examination. This is similar to the "Examine" // navigation type used by VRML browsers. // // - "walk": a style where mouse drags rotate about // the viewer's center as if the viewer is turning // about to look at a scene they are in. This is // similar to the "Walk" navigation type used by // VRML browsers. // // Aim the examine behavior at the scene's TransformGroup // and add the behavior to the scene root. // // Aim the walk behavior at the viewing platform's // TransformGroup and add the behavior to the scene root. // // Enable one (and only one!) of the two behaviors // depending upon the current navigation type. // examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform // gorup // to // modify exampleFrame); // Parent frame for cusor changes examineBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(examineBehavior); walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform // group to // modify exampleFrame); // Parent frame for cusor changes walkBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(walkBehavior); if (navigationType == Walk) { examineBehavior.setEnable(false); walkBehavior.setEnable(true); } else { examineBehavior.setEnable(true); walkBehavior.setEnable(false); } // // Compile the scene branch group and add it to the // SimpleUniverse. // if (shouldCompile) sceneRoot.compile(); universe.addBranchGraph(sceneRoot); reset(); } /** * Builds the scene. Example application subclasses should replace this * method with their own method to build 3D content. * * @return a Group containing 3D content to display */ public Group buildScene() { // Build the scene group containing nothing Group scene = new Group(); return scene; } //-------------------------------------------------------------- // SET/GET METHODS //-------------------------------------------------------------- /** * Sets the headlight on/off state. The headlight faces forward in the * direction the viewer is facing. Example applications that add their own * lights will typically turn the headlight off. A standard menu item * enables the headlight to be turned on and off via user control. * * @param onOff * a boolean turning the light on (true) or off (false) */ public void setHeadlightEnable(boolean onOff) { headlightOnOff = onOff; if (headlight != null) headlight.setEnable(headlightOnOff); if (headlightMenuItem != null) headlightMenuItem.setState(headlightOnOff); } /** * Gets the headlight on/off state. * * @return a boolean indicating if the headlight is on or off */ public boolean getHeadlightEnable() { return headlightOnOff; } /** * Sets the navigation type to be either Examine or Walk. The Examine * navigation type sets up behaviors that use mouse drags to rotate and * translate scene content as if it is an object held at arm's length and * under examination. The Walk navigation type uses mouse drags to rotate * and translate the viewer as if they are walking through the content. The * Examine type is the default. * * @param nav * either Walk or Examine */ public void setNavigationType(int nav) { if (nav == Walk) { navigationType = Walk; if (walkMenuItem != null) walkMenuItem.setState(true); if (examineMenuItem != null) examineMenuItem.setState(false); if (walkBehavior != null) walkBehavior.setEnable(true); if (examineBehavior != null) examineBehavior.setEnable(false); } else { navigationType = Examine; if (walkMenuItem != null) walkMenuItem.setState(false); if (examineMenuItem != null) examineMenuItem.setState(true); if (walkBehavior != null) walkBehavior.setEnable(false); if (examineBehavior != null) examineBehavior.setEnable(true); } } /** * Gets the current navigation type, returning either Walk or Examine. * * @return either Walk or Examine */ public int getNavigationType() { return navigationType; } /** * Sets whether the scene graph should be compiled or not. Normally this is * always a good idea. For some example applications that use this Example * framework, it is useful to disable compilation - particularly when nodes * and node components will need to be made un-live in order to make * changes. Once compiled, such components can be made un-live, but they are * still unchangable unless appropriate capabilities have been set. * * @param onOff * a boolean turning compilation on (true) or off (false) */ public void setCompilable(boolean onOff) { shouldCompile = onOff; } /** * Gets whether the scene graph will be compiled or not. * * @return a boolean indicating if scene graph compilation is on or off */ public boolean getCompilable() { return shouldCompile; } //These methods will be replaced // Set the view position and direction public void setViewpoint(Point3f position, Vector3f direction) { Transform3D t = new Transform3D(); t.set(new Vector3f(position)); exampleViewTransform.setTransform(t); // how to set direction? } // Reset transforms public void reset() { Transform3D trans = new Transform3D(); exampleSceneTransform.setTransform(trans); trans.set(new Vector3f(0.0f, 0.0f, 10.0f)); exampleViewTransform.setTransform(trans); setNavigationType(navigationType); } // // Gets the URL (with file: prepended) for the current directory. // This is a terrible hack needed in the Alpha release of Java3D // in order to build a full path URL for loading sounds with // MediaContainer. When MediaContainer is fully implemented, // it should handle relative path names, but not yet. // public String getCurrentDirectory() { // Create a bogus file so that we can query it's path File dummy = new File("dummy.tmp"); String dummyPath = dummy.getAbsolutePath(); // strip "/dummy.tmp" from end of dummyPath and put into 'path' if (dummyPath.endsWith(File.separator + "dummy.tmp")) { int index = dummyPath.lastIndexOf(File.separator + "dummy.tmp"); if (index >= 0) { int pathLength = index + 5; // pre-pend 'file:' char[] charPath = new char[pathLength]; dummyPath.getChars(0, index, charPath, 5); String path = new String(charPath, 0, pathLength); path = "file:" + path.substring(5, pathLength); return path + File.separator; } } return dummyPath + File.separator; } //-------------------------------------------------------------- // USER INTERFACE //-------------------------------------------------------------- /** * Builds the example AWT Frame menubar. Standard menus and their options * are added. Applications that subclass this class should build their * menubar additions within their initialize method. * * @return a MenuBar for the AWT Frame */ private MenuBar buildMenuBar() { // Build the menubar MenuBar menuBar = new MenuBar(); // File menu Menu m = new Menu("File"); m.addActionListener(this); m.add("Exit"); menuBar.add(m); // View menu m = new Menu("View"); m.addActionListener(this); m.add("Reset view"); m.addSeparator(); walkMenuItem = new CheckboxMenuItem("Walk"); walkMenuItem.addItemListener(this); m.add(walkMenuItem); examineMenuItem = new CheckboxMenuItem("Examine"); examineMenuItem.addItemListener(this); m.add(examineMenuItem); if (navigationType == Walk) { walkMenuItem.setState(true); examineMenuItem.setState(false); } else { walkMenuItem.setState(false); examineMenuItem.setState(true); } m.addSeparator(); headlightMenuItem = new CheckboxMenuItem("Headlight on/off"); headlightMenuItem.addItemListener(this); headlightMenuItem.setState(headlightOnOff); m.add(headlightMenuItem); menuBar.add(m); return menuBar; } /** * Shows the application's frame, making it and its menubar, 3D canvas, and * 3D content visible. */ public void showFrame() { exampleFrame.show(); } /** * Quits the application. */ public void quit() { System.exit(0); } /** * Handles menu selections. * * @param event * an ActionEvent indicating what menu action requires handling */ public void actionPerformed(ActionEvent event) { String arg = event.getActionCommand(); if (arg.equals("Reset view")) reset(); else if (arg.equals("Exit")) quit(); } /** * Handles checkbox items on a CheckboxMenu. The Example class has none of * its own, but subclasses may have some. * * @param menu * which CheckboxMenu needs action * @param check * which CheckboxMenu item has changed */ public void checkboxChanged(CheckboxMenu menu, int check) { // None for us } /** * Handles on/off checkbox items on a standard menu. * * @param event * an ItemEvent indicating what requires handling */ public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); boolean state; if (src == headlightMenuItem) { state = headlightMenuItem.getState(); headlight.setEnable(state); } else if (src == walkMenuItem) setNavigationType(Walk); else if (src == examineMenuItem) setNavigationType(Examine); } /** * Handles a window closing event notifying the application that the user * has chosen to close the application without selecting the "Exit" menu * item. * * @param event * a WindowEvent indicating the window is closing */ public void windowClosing(WindowEvent event) { quit(); } public void windowClosed(WindowEvent event) { } public void windowOpened(WindowEvent event) { } public void windowIconified(WindowEvent event) { } public void windowDeiconified(WindowEvent event) { } public void windowActivated(WindowEvent event) { } public void windowDeactivated(WindowEvent event) { } // Well known colors, positions, and directions public final static Color3f White = new Color3f(1.0f, 1.0f, 1.0f); public final static Color3f Gray = new Color3f(0.7f, 0.7f, 0.7f); public final static Color3f DarkGray = new Color3f(0.2f, 0.2f, 0.2f); public final static Color3f Black = new Color3f(0.0f, 0.0f, 0.0f); public final static Color3f Red = new Color3f(1.0f, 0.0f, 0.0f); public final static Color3f DarkRed = new Color3f(0.3f, 0.0f, 0.0f); public final static Color3f Yellow = new Color3f(1.0f, 1.0f, 0.0f); public final static Color3f DarkYellow = new Color3f(0.3f, 0.3f, 0.0f); public final static Color3f Green = new Color3f(0.0f, 1.0f, 0.0f); public final static Color3f DarkGreen = new Color3f(0.0f, 0.3f, 0.0f); public final static Color3f Cyan = new Color3f(0.0f, 1.0f, 1.0f); public final static Color3f Blue = new Color3f(0.0f, 0.0f, 1.0f); public final static Color3f DarkBlue = new Color3f(0.0f, 0.0f, 0.3f); public final static Color3f Magenta = new Color3f(1.0f, 0.0f, 1.0f); public final static Vector3f PosX = new Vector3f(1.0f, 0.0f, 0.0f); public final static Vector3f NegX = new Vector3f(-1.0f, 0.0f, 0.0f); public final static Vector3f PosY = new Vector3f(0.0f, 1.0f, 0.0f); public final static Vector3f NegY = new Vector3f(0.0f, -1.0f, 0.0f); public final static Vector3f PosZ = new Vector3f(0.0f, 0.0f, 1.0f); public final static Vector3f NegZ = new Vector3f(0.0f, 0.0f, -1.0f); public final static Point3f Origin = new Point3f(0.0f, 0.0f, 0.0f); public final static Point3f PlusX = new Point3f(0.75f, 0.0f, 0.0f); public final static Point3f MinusX = new Point3f(-0.75f, 0.0f, 0.0f); public final static Point3f PlusY = new Point3f(0.0f, 0.75f, 0.0f); public final static Point3f MinusY = new Point3f(0.0f, -0.75f, 0.0f); public final static Point3f PlusZ = new Point3f(0.0f, 0.0f, 0.75f); public final static Point3f MinusZ = new Point3f(0.0f, 0.0f, -0.75f); } // //INTERFACE //CheckboxMenuListener - listen for checkbox change events // //DESCRIPTION //The checkboxChanged method is called by users of this class //to notify the listener when a checkbox choice has changed on //a CheckboxMenu class menu. // interface CheckboxMenuListener extends EventListener { public void checkboxChanged(CheckboxMenu menu, int check); } /** * ExamineViewerBehavior * * @version 1.0, 98/04/16 */ /** * Wakeup on mouse button presses, releases, and mouse movements and generate * transforms in an "examination style" that enables the user to rotate, * translation, and zoom an object as if it is held at arm's length. Such an * examination style is similar to the "Examine" navigation type used by VRML * browsers. * * The behavior maps mouse drags to different transforms depending upon the * mosue button held down: * * Button 1 (left) Horizontal movement --> Y-axis rotation Vertical movement --> * X-axis rotation * * Button 2 (middle) Horizontal movement --> nothing Vertical movement --> * Z-axis translation * * Button 3 (right) Horizontal movement --> X-axis translation Vertical movement * --> Y-axis translation * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * * No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3 * * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the examine rotation and translation * to be reset. */ // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Examine" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. class ExamineViewerBehavior extends ViewerBehavior { // Previous cursor location protected int previousX = 0; protected int previousY = 0; // Saved standard cursor protected Cursor savedCursor = null; /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. */ public ExamineViewerBehavior() { super(); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. * * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(Component parent) { super(parent); } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. */ public ExamineViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Construct an examine behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. * @param parent * The AWT Component that contains the area generating mouse * events. */ public ExamineViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Respond to a button1 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> positive Y-axis rotation // positive Y mouse delta --> positive X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = deltaY * XRotationFactor; double yRotationAngle = deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); currentTransform.mul(transform2, currentTransform); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button2 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive Y mouse delta --> positive Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaY = y - previousY; if (deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double zTranslationDistance = deltaY * ZTranslationFactor; // // Build transforms // translate.set(0.0, 0.0, zTranslationDistance); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to a button3 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1, currentTransform); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Respond to an elapsed frames event (assuming subclass has set up a wakeup * criterion for it). * * @param time * A WakeupOnElapsedFrames criterion to respond to. */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // Can't happen } } /* * * Copyright (c) 1998 David R. Nadeau * */ /** * WalkViewerBehavior is a utility class that creates a "walking style" * navigation symantic. * * The behavior wakes up on mouse button presses, releases, and mouse movements * and generates transforms in a "walk style" that enables the user to walk * through a scene, translating and turning about as if they are within the * scene. Such a walk style is similar to the "Walk" navigation type used by * VRML browsers. * <P> * The behavior maps mouse drags to different transforms depending upon the * mouse button held down: * <DL> * <DT>Button 1 (left) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> Z-axis translation * * <DT>Button 2 (middle) * <DD>Horizontal movement --> Y-axis rotation * <DD>Vertical movement --> X-axis rotation * * <DT>Button 3 (right) * <DD>Horizontal movement --> X-axis translation * <DD>Vertical movement --> Y-axis translation * </DL> * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * <UL> * <LI>No modifiers = Button 1 * <LI>ALT = Button 2 * <LI>Meta = Button 3 * <LI>Control = Button 3 * </UL> * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the walk rotation and translation to * be reset. * <P> * While a mouse button is down, the behavior automatically changes the cursor * in a given parent AWT Component. If no parent Component is given, no cursor * changes are attempted. * * @version 1.0, 98/04/16 * @author David R. Nadeau, San Diego Supercomputer Center */ class WalkViewerBehavior extends ViewerBehavior { // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific "Walk" symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. // Previous and initial cursor locations protected int previousX = 0; protected int previousY = 0; protected int initialX = 0; protected int initialY = 0; // Deadzone size (delta from initial XY for which no // translate or rotate action is taken protected static final int DELTAX_DEADZONE = 10; protected static final int DELTAY_DEADZONE = 10; // Keep a set of wakeup criterion for animation-generated // event types. protected WakeupCriterion[] mouseAndAnimationEvents = null; protected WakeupOr mouseAndAnimationCriterion = null; protected WakeupOr savedMouseCriterion = null; // Saved standard cursor protected Cursor savedCursor = null; /** * Default Rotation and translation scaling factors for animated movements * (Button 1 press). */ public static final double DEFAULT_YROTATION_ANIMATION_FACTOR = 0.0002; public static final double DEFAULT_ZTRANSLATION_ANIMATION_FACTOR = 0.01; protected double YRotationAnimationFactor = DEFAULT_YROTATION_ANIMATION_FACTOR; protected double ZTranslationAnimationFactor = DEFAULT_ZTRANSLATION_ANIMATION_FACTOR; /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed during mouse actions if the parent frame is set * using the setParentComponent method. * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior() { super(); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into a * TransformGroup that must be set using the setTransformGroup method. The * cursor will be changed within the given AWT parent Component during mouse * drags. * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(Component parent) { super(parent); } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed during mouse actions if the * parent frame is set using the setParentComponent method. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Constructs a new walk behavior that converts mouse actions into rotations * and translations. Rotations and translations are written into the given * TransformGroup. The cursor will be changed within the given AWT parent * Component during mouse drags. * * @param transformGroup * a TransformGroup whos transform is read and written by the * behavior * * @param parent * a parent AWT Component within which the cursor will change * during mouse drags * * @return a new WalkViewerBehavior that needs its TransformGroup and parent * Component set */ public WalkViewerBehavior(TransformGroup transformGroup, Component parent) { super(parent); subjectTransformGroup = transformGroup; } /** * Initializes the behavior. */ public void initialize() { super.initialize(); savedMouseCriterion = mouseCriterion; // from parent class mouseAndAnimationEvents = new WakeupCriterion[4]; mouseAndAnimationEvents[0] = new WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED); mouseAndAnimationEvents[1] = new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED); mouseAndAnimationEvents[2] = new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED); mouseAndAnimationEvents[3] = new WakeupOnElapsedFrames(0); mouseAndAnimationCriterion = new WakeupOr(mouseAndAnimationEvents); // Don't use the above criterion until a button 1 down event } /** * Sets the Y rotation animation scaling factor for Y-axis rotations. This * scaling factor is used to control the speed of Y rotation when button 1 * is pressed and dragged. * * @param factor * the double Y rotation scaling factor */ public void setYRotationAnimationFactor(double factor) { YRotationAnimationFactor = factor; } /** * Gets the current Y animation rotation scaling factor for Y-axis * rotations. * * @return the double Y rotation scaling factor */ public double getYRotationAnimationFactor() { return YRotationAnimationFactor; } /** * Sets the Z animation translation scaling factor for Z-axis translations. * This scaling factor is used to control the speed of Z translation when * button 1 is pressed and dragged. * * @param factor * the double Z translation scaling factor */ public void setZTranslationAnimationFactor(double factor) { ZTranslationAnimationFactor = factor; } /** * Gets the current Z animation translation scaling factor for Z-axis * translations. * * @return the double Z translation scaling factor */ public double getZTranslationAnimationFactor() { return ZTranslationAnimationFactor; } /** * Responds to an elapsed frames event. Such an event is generated on every * frame while button 1 is held down. On each call, this method computes new * Y-axis rotation and Z-axis translation values and writes them to the * behavior's TransformGroup. The translation and rotation amounts are * computed based upon the distance between the current cursor location and * the cursor location when button 1 was pressed. As this distance * increases, the translation or rotation amount increases. * * @param time * the WakeupOnElapsedFrames criterion to respond to */ public void onElapsedFrames(WakeupOnElapsedFrames timeEvent) { // // Time elapsed while button down: create a rotation and // a translation. // // Compute the delta in X and Y from the initial position to // the previous position. Multiply the delta times a scaling // factor to compute an offset to add to the current translation // and rotation. Use the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> positive Z-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // if (buttonPressed != BUTTON1) return; int deltaX = previousX - initialX; int deltaY = previousY - initialY; double yRotationAngle = -deltaX * YRotationAnimationFactor; double zTranslationDistance = deltaY * ZTranslationAnimationFactor; // // Build transforms // transform1.rotY(yRotationAngle); translate.set(0.0, 0.0, zTranslationDistance); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform1, currentTransform); // Translate back from the origin by the original translation // distance, plus the new walk translation... but force walk // to travel on a plane by ignoring the Y component of a // transformed translation vector. currentTransform.transform(translate); translate.x += matrix.m03; // add in existing X translation translate.y = matrix.m13; // use Y translation translate.z += matrix.m23; // add in existing Z translation currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); } /** * Responds to a button1 event (press, release, or drag). On a press, the * method adds a wakeup criterion to the behavior's set, callling for the * behavior to be awoken on each frame. On a button prelease, this criterion * is removed from the set. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton1(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position and change // the wakeup criterion to include elapsed time wakeups // so we can animate. previousX = x; previousY = y; initialX = x; initialY = y; // Swap criterion... parent class will not reschedule us mouseCriterion = mouseAndAnimationCriterion; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.HAND_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: restore original wakeup // criterion which only includes mouse activity, not // elapsed time mouseCriterion = savedMouseCriterion; // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } previousX = x; previousY = y; } /** * Responds to a button2 event (press, release, or drag). On a press, the * method records the initial cursor location. On a drag, the difference * between the current and previous cursor location provides a delta that * controls the amount by which to rotate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton2(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; initialX = x; initialY = y; // Change to a "rotate" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a rotation // // Compute the delta in X and Y from the previous // position. Use the delta to compute rotation // angles with the mapping: // // positive X mouse delta --> negative Y-axis rotation // positive Y mouse delta --> negative X-axis rotation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = 0; if (Math.abs(y - initialY) > DELTAY_DEADZONE) { // Cursor has moved far enough vertically to consider // it intentional, so get it's delta. deltaY = y - previousY; } if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xRotationAngle = -deltaY * XRotationFactor; double yRotationAngle = -deltaX * YRotationFactor; // // Build transforms // transform1.rotX(xRotationAngle); transform2.rotY(yRotationAngle); // Get and save the current transform matrix subjectTransformGroup.getTransform(currentTransform); currentTransform.get(matrix); translate.set(matrix.m03, matrix.m13, matrix.m23); // Translate to the origin, rotate, then translate back currentTransform.setTranslation(origin); currentTransform.mul(transform2, currentTransform); currentTransform.mul(transform1); currentTransform.setTranslation(translate); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } /** * Responds to a button3 event (press, release, or drag). On a drag, the * difference between the current and previous cursor location provides a * delta that controls the amount by which to translate in X and Y. * * @param mouseEvent * the MouseEvent to respond to */ public void onButton3(MouseEvent mev) { if (subjectTransformGroup == null) return; int x = mev.getX(); int y = mev.getY(); if (mev.getID() == MouseEvent.MOUSE_PRESSED) { // Mouse button pressed: record position previousX = x; previousY = y; // Change to a "move" cursor if (parentComponent != null) { savedCursor = parentComponent.getCursor(); parentComponent.setCursor(Cursor.getPredefinedCursor(Cursor.MOVE_CURSOR)); } return; } if (mev.getID() == MouseEvent.MOUSE_RELEASED) { // Mouse button released: do nothing // Switch the cursor back if (parentComponent != null) parentComponent.setCursor(savedCursor); return; } // // Mouse moved while button down: create a translation // // Compute the delta in X and Y from the previous // position. Use the delta to compute translation // distances with the mapping: // // positive X mouse delta --> positive X-axis translation // positive Y mouse delta --> negative Y-axis translation // // where positive X mouse movement is to the right, and // positive Y mouse movement is **down** the screen. // int deltaX = x - previousX; int deltaY = y - previousY; if (deltaX > UNUSUAL_XDELTA || deltaX < -UNUSUAL_XDELTA || deltaY > UNUSUAL_YDELTA || deltaY < -UNUSUAL_YDELTA) { // Deltas are too huge to be believable. Probably a glitch. // Don't record the new XY location, or do anything. return; } double xTranslationDistance = deltaX * XTranslationFactor; double yTranslationDistance = -deltaY * YTranslationFactor; // // Build transforms // translate.set(xTranslationDistance, yTranslationDistance, 0.0); transform1.set(translate); // Get and save the current transform subjectTransformGroup.getTransform(currentTransform); // Translate as needed currentTransform.mul(transform1); // Update the transform group subjectTransformGroup.setTransform(currentTransform); previousX = x; previousY = y; } } // //CLASS //CheckboxMenu - build a menu of grouped checkboxes // //DESCRIPTION //The class creates a menu with one or more CheckboxMenuItem's //and monitors that menu. When a menu checkbox is picked, the //previous one is turned off (in radio-button style). Then, //a given listener's checkboxChanged method is called, passing it //the menu and the item checked. // class CheckboxMenu extends Menu implements ItemListener { // State protected CheckboxMenuItem[] checks = null; protected int current = 0; protected CheckboxMenuListener listener = null; // Construct public CheckboxMenu(String name, NameValue[] items, CheckboxMenuListener listen) { this(name, items, 0, listen); } public CheckboxMenu(String name, NameValue[] items, int cur, CheckboxMenuListener listen) { super(name); current = cur; listener = listen; if (items == null) return; checks = new CheckboxMenuItem[items.length]; for (int i = 0; i < items.length; i++) { checks[i] = new CheckboxMenuItem(items[i].name, false); checks[i].addItemListener(this); add(checks[i]); } checks[cur].setState(true); } // Handle checkbox changed events public void itemStateChanged(ItemEvent event) { Object src = event.getSource(); for (int i = 0; i < checks.length; i++) { if (src == checks[i]) { // Update the checkboxes checks[current].setState(false); current = i; checks[current].setState(true); if (listener != null) listener.checkboxChanged(this, i); return; } } } // Methods to get and set state public int getCurrent() { return current; } public void setCurrent(int cur) { if (cur < 0 || cur >= checks.length) return; // ignore out of range choices if (checks == null) return; checks[current].setState(false); current = cur; checks[current].setState(true); } public CheckboxMenuItem getSelectedCheckbox() { if (checks == null) return null; return checks[current]; } public void setSelectedCheckbox(CheckboxMenuItem item) { if (checks == null) return; for (int i = 0; i < checks.length; i++) { if (item == checks[i]) { checks[i].setState(false); current = i; checks[i].setState(true); } } } } /** * ViewerBehavior * * @version 1.0, 98/04/16 */ /** * Wakeup on mouse button presses, releases, and mouse movements and generate * transforms for a transform group. Classes that extend this class impose * specific symantics, such as "Examine" or "Walk" viewing, similar to the * navigation types used by VRML browsers. * * To support systems with 2 or 1 mouse buttons, the following alternate * mappings are supported while dragging with any mouse button held down and * zero or more keyboard modifiers held down: * * No modifiers = Button 1 ALT = Button 2 Meta = Button 3 Control = Button 3 * * The behavior automatically modifies a TransformGroup provided to the * constructor. The TransformGroup's transform can be set at any time by the * application or other behaviors to cause the viewer's rotation and translation * to be reset. */ // This class is inspired by the MouseBehavior, MouseRotate, // MouseTranslate, and MouseZoom utility behaviors provided with // Java 3D. This class differs from those utilities in that it: // // (a) encapsulates all three behaviors into one in order to // enforce a specific viewing symantic // // (b) supports set/get of the rotation and translation factors // that control the speed of movement. // // (c) supports the "Control" modifier as an alternative to the // "Meta" modifier not present on PC, Mac, and most non-Sun // keyboards. This makes button3 behavior usable on PCs, // Macs, and other systems with fewer than 3 mouse buttons. abstract class ViewerBehavior extends Behavior { // Keep track of the transform group who's transform we modify // during mouse motion. protected TransformGroup subjectTransformGroup = null; // Keep a set of wakeup criterion for different mouse-generated // event types. protected WakeupCriterion[] mouseEvents = null; protected WakeupOr mouseCriterion = null; // Track which button was last pressed protected static final int BUTTONNONE = -1; protected static final int BUTTON1 = 0; protected static final int BUTTON2 = 1; protected static final int BUTTON3 = 2; protected int buttonPressed = BUTTONNONE; // Keep a few Transform3Ds for use during event processing. This // avoids having to allocate new ones on each event. protected Transform3D currentTransform = new Transform3D(); protected Transform3D transform1 = new Transform3D(); protected Transform3D transform2 = new Transform3D(); protected Matrix4d matrix = new Matrix4d(); protected Vector3d origin = new Vector3d(0.0, 0.0, 0.0); protected Vector3d translate = new Vector3d(0.0, 0.0, 0.0); // Unusual X and Y delta limits. protected static final int UNUSUAL_XDELTA = 400; protected static final int UNUSUAL_YDELTA = 400; protected Component parentComponent = null; /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. */ public ViewerBehavior() { super(); } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into a * transform group given later with the setTransformGroup( ) method. * * @param parent * The AWT Component that contains the area generating mouse * events. */ public ViewerBehavior(Component parent) { super(); parentComponent = parent; } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. */ public ViewerBehavior(TransformGroup transformGroup) { super(); subjectTransformGroup = transformGroup; } /** * Construct a viewer behavior that listens to mouse movement and button * presses to generate rotation and translation transforms written into the * given transform group. * * @param transformGroup * The transform group to be modified by the behavior. * @param parent * The AWT Component that contains the area generating mouse * events. */ public ViewerBehavior(TransformGroup transformGroup, Component parent) { super(); subjectTransformGroup = transformGroup; parentComponent = parent; } /** * Set the transform group modified by the viewer behavior. Setting the * transform group to null disables the behavior until the transform group * is again set to an existing group. * * @param transformGroup * The new transform group to be modified by the behavior. */ public void setTransformGroup(TransformGroup transformGroup) { subjectTransformGroup = transformGroup; } /** * Get the transform group modified by the viewer behavior. */ public TransformGroup getTransformGroup() { return subjectTransformGroup; } /** * Sets the parent component who's cursor will be changed during mouse * drags. If no component is given is given to the constructor, or set via * this method, no cursor changes will be done. * * @param parent * the AWT Component, such as a Frame, within which cursor * changes should take place during mouse drags */ public void setParentComponent(Component parent) { parentComponent = parent; } /* * Gets the parent frame within which the cursor changes during mouse drags. * * @return the AWT Component, such as a Frame, within which cursor changes * should take place during mouse drags. Returns null if no parent is set. */ public Component getParentComponent() { return parentComponent; } /** * Initialize the behavior. */ public void initialize() { // Wakeup when the mouse is dragged or when a mouse button // is pressed or released. mouseEvents = new WakeupCriterion[3]; mouseEvents[0] = new WakeupOnAWTEvent(MouseEvent.MOUSE_DRAGGED); mouseEvents[1] = new WakeupOnAWTEvent(MouseEvent.MOUSE_PRESSED); mouseEvents[2] = new WakeupOnAWTEvent(MouseEvent.MOUSE_RELEASED); mouseCriterion = new WakeupOr(mouseEvents); wakeupOn(mouseCriterion); } /** * Process a new wakeup. Interpret mouse button presses, releases, and mouse * drags. * * @param criteria * The wakeup criteria causing the behavior wakeup. */ public void processStimulus(Enumeration criteria) { WakeupCriterion wakeup = null; AWTEvent[] event = null; int whichButton = BUTTONNONE; // Process all pending wakeups while (criteria.hasMoreElements()) { wakeup = (WakeupCriterion) criteria.nextElement(); if (wakeup instanceof WakeupOnAWTEvent) { event = ((WakeupOnAWTEvent) wakeup).getAWTEvent(); // Process all pending events for (int i = 0; i < event.length; i++) { if (event[i].getID() != MouseEvent.MOUSE_PRESSED && event[i].getID() != MouseEvent.MOUSE_RELEASED && event[i].getID() != MouseEvent.MOUSE_DRAGGED) // Ignore uninteresting mouse events continue; // // Regretably, Java event handling (or perhaps // underlying OS event handling) doesn't always // catch button bounces (redundant presses and // releases), or order events so that the last // drag event is delivered before a release. // This means we can get stray events that we // filter out here. // if (event[i].getID() == MouseEvent.MOUSE_PRESSED && buttonPressed != BUTTONNONE) // Ignore additional button presses until a release continue; if (event[i].getID() == MouseEvent.MOUSE_RELEASED && buttonPressed == BUTTONNONE) // Ignore additional button releases until a press continue; if (event[i].getID() == MouseEvent.MOUSE_DRAGGED && buttonPressed == BUTTONNONE) // Ignore drags until a press continue; MouseEvent mev = (MouseEvent) event[i]; int modifiers = mev.getModifiers(); // // Unfortunately, the underlying event handling // doesn't do a "grab" operation when a mouse button // is pressed. This means that once a button is // pressed, if another mouse button or a keyboard // modifier key is pressed, the delivered mouse event // will show that a different button is being held // down. For instance: // // Action Event // Button 1 press Button 1 press // Drag with button 1 down Button 1 drag // ALT press - // Drag with ALT & button 1 down Button 2 drag // Button 1 release Button 2 release // // The upshot is that we can get a button press // without a matching release, and the button // associated with a drag can change mid-drag. // // To fix this, we watch for an initial button // press, and thenceforth consider that button // to be the one held down, even if additional // buttons get pressed, and despite what is // reported in the event. Only when a button is // released, do we end such a grab. // if (buttonPressed == BUTTONNONE) { // No button is pressed yet, figure out which // button is down now and how to direct events if (((modifiers & InputEvent.BUTTON3_MASK) != 0) || (((modifiers & InputEvent.BUTTON1_MASK) != 0) && ((modifiers & InputEvent.CTRL_MASK) == InputEvent.CTRL_MASK))) { // Button 3 activity (META or CTRL down) whichButton = BUTTON3; } else if ((modifiers & InputEvent.BUTTON2_MASK) != 0) { // Button 2 activity (ALT down) whichButton = BUTTON2; } else { // Button 1 activity (no modifiers down) whichButton = BUTTON1; } // If the event is to press a button, then // record that that button is now down if (event[i].getID() == MouseEvent.MOUSE_PRESSED) buttonPressed = whichButton; } else { // Otherwise a button was pressed earlier and // hasn't been released yet. Assign all further // events to it, even if ALT, META, CTRL, or // another button has been pressed as well. whichButton = buttonPressed; } // Distribute the event switch (whichButton) { case BUTTON1: onButton1(mev); break; case BUTTON2: onButton2(mev); break; case BUTTON3: onButton3(mev); break; default: break; } // If the event is to release a button, then // record that that button is now up if (event[i].getID() == MouseEvent.MOUSE_RELEASED) buttonPressed = BUTTONNONE; } continue; } if (wakeup instanceof WakeupOnElapsedFrames) { onElapsedFrames((WakeupOnElapsedFrames) wakeup); continue; } } // Reschedule us for another wakeup wakeupOn(mouseCriterion); } /** * Default X and Y rotation factors, and XYZ translation factors. */ public static final double DEFAULT_XROTATION_FACTOR = 0.02; public static final double DEFAULT_YROTATION_FACTOR = 0.005; public static final double DEFAULT_XTRANSLATION_FACTOR = 0.02; public static final double DEFAULT_YTRANSLATION_FACTOR = 0.02; public static final double DEFAULT_ZTRANSLATION_FACTOR = 0.04; protected double XRotationFactor = DEFAULT_XROTATION_FACTOR; protected double YRotationFactor = DEFAULT_YROTATION_FACTOR; protected double XTranslationFactor = DEFAULT_XTRANSLATION_FACTOR; protected double YTranslationFactor = DEFAULT_YTRANSLATION_FACTOR; protected double ZTranslationFactor = DEFAULT_ZTRANSLATION_FACTOR; /** * Set the X rotation scaling factor for X-axis rotations. * * @param factor * The new scaling factor. */ public void setXRotationFactor(double factor) { XRotationFactor = factor; } /** * Get the current X rotation scaling factor for X-axis rotations. */ public double getXRotationFactor() { return XRotationFactor; } /** * Set the Y rotation scaling factor for Y-axis rotations. * * @param factor * The new scaling factor. */ public void setYRotationFactor(double factor) { YRotationFactor = factor; } /** * Get the current Y rotation scaling factor for Y-axis rotations. */ public double getYRotationFactor() { return YRotationFactor; } /** * Set the X translation scaling factor for X-axis translations. * * @param factor * The new scaling factor. */ public void setXTranslationFactor(double factor) { XTranslationFactor = factor; } /** * Get the current X translation scaling factor for X-axis translations. */ public double getXTranslationFactor() { return XTranslationFactor; } /** * Set the Y translation scaling factor for Y-axis translations. * * @param factor * The new scaling factor. */ public void setYTranslationFactor(double factor) { YTranslationFactor = factor; } /** * Get the current Y translation scaling factor for Y-axis translations. */ public double getYTranslationFactor() { return YTranslationFactor; } /** * Set the Z translation scaling factor for Z-axis translations. * * @param factor * The new scaling factor. */ public void setZTranslationFactor(double factor) { ZTranslationFactor = factor; } /** * Get the current Z translation scaling factor for Z-axis translations. */ public double getZTranslationFactor() { return ZTranslationFactor; } /** * Respond to a button1 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton1(MouseEvent mouseEvent); /** * Respond to a button2 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton2(MouseEvent mouseEvent); /** * Responed to a button3 event (press, release, or drag). * * @param mouseEvent * A MouseEvent to respond to. */ public abstract void onButton3(MouseEvent mouseEvent); /** * Respond to an elapsed frames event (assuming subclass has set up a wakeup * criterion for it). * * @param time * A WakeupOnElapsedFrames criterion to respond to. */ public abstract void onElapsedFrames(WakeupOnElapsedFrames timeEvent); } // //CLASS //NameValue - create a handy name-value pair // //DESCRIPTION //It is frequently handy to have one or more name-value pairs //with which to store named colors, named positions, named textures, //and so forth. Several of the examples use this class. // //AUTHOR //David R. Nadeau / San Diego Supercomputer Center // class NameValue { public String name; public Object value; public NameValue(String n, Object v) { name = n; value = v; } }