List of usage examples for javax.media.j3d BoundingSphere BoundingSphere
public BoundingSphere(Point3d center, double radius)
From source file:TransformExplorer.java
public void init() { setLayout(new BorderLayout()); GraphicsConfiguration config = SimpleUniverse.getPreferredConfiguration(); canvas = new Canvas3D(config); add("Center", canvas); u = new SimpleUniverse(canvas); if (isApplication) { offScreenCanvas = new OffScreenCanvas3D(config, true); // set the size of the off-screen canvas based on a scale // of the on-screen size Screen3D sOn = canvas.getScreen3D(); Screen3D sOff = offScreenCanvas.getScreen3D(); Dimension dim = sOn.getSize(); dim.width *= offScreenScale;/*from w w w . j a v a 2 s . co m*/ dim.height *= offScreenScale; sOff.setSize(dim); sOff.setPhysicalScreenWidth(sOn.getPhysicalScreenWidth() * offScreenScale); sOff.setPhysicalScreenHeight(sOn.getPhysicalScreenHeight() * offScreenScale); // attach the offscreen canvas to the view u.getViewer().getView().addCanvas3D(offScreenCanvas); } // Create a simple scene and attach it to the virtual universe BranchGroup scene = createSceneGraph(); // get the view view = u.getViewer().getView(); // This will move the ViewPlatform back a bit so the // objects in the scene can be viewed. ViewingPlatform viewingPlatform = u.getViewingPlatform(); viewingPlatform.setNominalViewingTransform(); // add an orbit behavior to move the viewing platform OrbitBehavior orbit = new OrbitBehavior(canvas, OrbitBehavior.STOP_ZOOM); BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); orbit.setSchedulingBounds(bounds); viewingPlatform.setViewPlatformBehavior(orbit); u.addBranchGraph(scene); add("East", guiPanel()); }
From source file:ExHenge.java
public Group buildScene() { // Turn off the example headlight setHeadlightEnable(false);//w ww. j a va 2 s.c o m // Default to walk navigation setNavigationType(Walk); // // Preload the texture images // if (debug) System.err.println(" textures..."); Texture groundTex = null; Texture spurTex = null; Texture domeTex = null; TextureLoader texLoader = null; ImageComponent image = null; texLoader = new TextureLoader("mud01.jpg", this); image = texLoader.getImage(); if (image == null) System.err.println("Cannot load mud01.jpg texture"); else { groundTex = texLoader.getTexture(); groundTex.setBoundaryModeS(Texture.WRAP); groundTex.setBoundaryModeT(Texture.WRAP); groundTex.setMinFilter(Texture.NICEST); groundTex.setMagFilter(Texture.NICEST); groundTex.setMipMapMode(Texture.BASE_LEVEL); groundTex.setEnable(true); } texLoader = new TextureLoader("stonebrk2.jpg", this); image = texLoader.getImage(); if (image == null) System.err.println("Cannot load stonebrk2.jpg texture"); else { spurTex = texLoader.getTexture(); spurTex.setBoundaryModeS(Texture.WRAP); spurTex.setBoundaryModeT(Texture.WRAP); spurTex.setMinFilter(Texture.NICEST); spurTex.setMagFilter(Texture.NICEST); spurTex.setMipMapMode(Texture.BASE_LEVEL); spurTex.setEnable(true); } texLoader = new TextureLoader("fire.jpg", this); image = texLoader.getImage(); if (image == null) System.err.println("Cannot load fire.jpg texture"); else { domeTex = texLoader.getTexture(); domeTex.setBoundaryModeS(Texture.WRAP); domeTex.setBoundaryModeT(Texture.WRAP); domeTex.setMinFilter(Texture.NICEST); domeTex.setMagFilter(Texture.NICEST); domeTex.setMipMapMode(Texture.BASE_LEVEL); domeTex.setEnable(true); } // // Build some shapes we'll need // if (debug) System.err.println(" flying buttresses..."); // Build three types of spurs (flying buttresses) Appearance spurApp = new Appearance(); Material spurMat = new Material(); spurMat.setAmbientColor(0.6f, 0.6f, 0.6f); spurMat.setDiffuseColor(1.0f, 1.0f, 1.0f); spurMat.setSpecularColor(0.0f, 0.0f, 0.0f); spurApp.setMaterial(spurMat); Transform3D tr = new Transform3D(); tr.setIdentity(); tr.setScale(new Vector3d(1.0, 4.0, 1.0)); TextureAttributes spurTexAtt = new TextureAttributes(); spurTexAtt.setTextureMode(TextureAttributes.MODULATE); spurTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); spurTexAtt.setTextureTransform(tr); spurApp.setTextureAttributes(spurTexAtt); if (spurTex != null) spurApp.setTexture(spurTex); Arch spur1 = new Arch(0.0, // start Phi 1.571, // end Phi 9, // nPhi -0.0982, // start Theta 0.0982, // end Theta (11.25 degrees) 2, // nTheta 2.5, // start radius 1.0, // end radius 0.05, // start phi thickness 0.025, // end phi thickness spurApp); // appearance Arch spur2 = new Arch(0.0, // start Phi 1.571, // end Phi 9, // nPhi -0.0982, // start Theta 0.0982, // end Theta (11.25 degrees) 2, // nTheta 1.5, // start radius 2.0, // end radius 0.05, // start phi thickness 0.025, // end phi thickness spurApp); // appearance Arch spur3 = new Arch(0.0, // start Phi 1.571, // end Phi 9, // nPhi -0.0982, // start Theta 0.0982, // end Theta (11.25 degrees) 2, // nTheta 1.5, // start radius 1.0, // end radius 0.05, // start phi thickness 0.025, // end phi thickness spurApp); // appearance Arch spur4 = new Arch(0.0, // start Phi 1.178, // end Phi 9, // nPhi -0.0982, // start Theta 0.0982, // end Theta (11.25 degrees) 2, // nTheta 4.0, // start radius 4.0, // end radius 0.05, // start phi thickness 0.025, // end phi thickness spurApp); // appearance // Put each spur into a shared group so we can instance // the spurs multiple times SharedGroup spur1Group = new SharedGroup(); spur1Group.addChild(spur1); spur1Group.compile(); SharedGroup spur2Group = new SharedGroup(); spur2Group.addChild(spur2); spur2Group.compile(); SharedGroup spur3Group = new SharedGroup(); spur3Group.addChild(spur3); spur3Group.compile(); SharedGroup spur4Group = new SharedGroup(); spur4Group.addChild(spur4); spur4Group.compile(); // Build a central dome if (debug) System.err.println(" central dome..."); Appearance domeApp = new Appearance(); // No material needed - we want the dome to glow, // so use a REPLACE mode texture only TextureAttributes domeTexAtt = new TextureAttributes(); domeTexAtt.setTextureMode(TextureAttributes.REPLACE); domeTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); domeApp.setTextureAttributes(domeTexAtt); if (domeTex != null) domeApp.setTexture(domeTex); Arch dome = new Arch(0.0, // start Phi 1.571, // end Phi 5, // nPhi 0.0, // start Theta 2.0 * Math.PI, // end Theta (360 degrees) 17, // nTheta 1.0, // start radius 1.0, // end radius 0.0, // start phi thickness 0.0, // end phi thickness domeApp); // appearance // Build the ground. Use a trick to get better lighting // effects by using an elevation grid. The idea is this: // for interactive graphics systems, such as those // controlled by Java3D, lighting effects are computed only // at triangle vertexes. Imagine a big rectangular ground // underneath a PointLight (added below). If the // PointLight is above the center of the square, in the real // world we'd expect a bright spot below it, fading to // darkness at the edges of the square. Not so in // interactive graphics. Since lighting is only computed // at vertexes, and the square's vertexes are each // equidistant from a centered PointLight, all four square // coordinates get the same brightness. That brightness // is interpolated across the square, giving a *constant* // brightness for the entire square! There is no bright // spot under the PointLight. So, here's the trick: use // more triangles. Pretty simple. Split the ground under // the PointLight into a grid of smaller squares. Each // smaller square is shaded using light brightness computed // at the square's vertexes. Squares directly under the // PointLight get brighter lighting at their vertexes, and // thus they are bright. This gives the desired bright // spot under the PointLight. The more squares we use // (a denser grid), the more accurate the bright spot and // the smoother the lighting gradation from bright directly // under the PointLight, to dark at the distant edges. Of // course, with more squares, we also get more polygons to // draw and a performance slow-down. So there is a // tradeoff between lighting quality and drawing speed. // For this example, we'll use a coarse mesh of triangles // created using an ElevationGrid shape. if (debug) System.err.println(" ground..."); Appearance groundApp = new Appearance(); Material groundMat = new Material(); groundMat.setAmbientColor(0.3f, 0.3f, 0.3f); groundMat.setDiffuseColor(0.7f, 0.7f, 0.7f); groundMat.setSpecularColor(0.0f, 0.0f, 0.0f); groundApp.setMaterial(groundMat); tr = new Transform3D(); tr.setScale(new Vector3d(8.0, 8.0, 1.0)); TextureAttributes groundTexAtt = new TextureAttributes(); groundTexAtt.setTextureMode(TextureAttributes.MODULATE); groundTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); groundTexAtt.setTextureTransform(tr); groundApp.setTextureAttributes(groundTexAtt); if (groundTex != null) groundApp.setTexture(groundTex); ElevationGrid ground = new ElevationGrid(11, // X dimension 11, // Z dimension 2.0f, // X spacing 2.0f, // Z spacing // Automatically use zero heights groundApp); // Appearance // // Build the scene using the shapes above. Place everything // withing a TransformGroup. // // Build the scene root TransformGroup scene = new TransformGroup(); tr = new Transform3D(); tr.setTranslation(new Vector3f(0.0f, -1.6f, 0.0f)); scene.setTransform(tr); // Create influencing bounds BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // General Ambient light ambient = new AmbientLight(); ambient.setEnable(ambientOnOff); ambient.setColor(new Color3f(0.3f, 0.3f, 0.3f)); ambient.setCapability(AmbientLight.ALLOW_STATE_WRITE); ambient.setInfluencingBounds(worldBounds); scene.addChild(ambient); // Bright Ambient light brightAmbient = new AmbientLight(); brightAmbient.setEnable(brightAmbientOnOff); brightAmbient.setColor(new Color3f(1.0f, 1.0f, 1.0f)); brightAmbient.setCapability(AmbientLight.ALLOW_STATE_WRITE); brightAmbient.setInfluencingBounds(worldBounds); scene.addChild(brightAmbient); // Red directional light redDirectional = new DirectionalLight(); redDirectional.setEnable(redDirectionalOnOff); redDirectional.setColor(new Color3f(1.0f, 0.0f, 0.0f)); redDirectional.setDirection(new Vector3f(1.0f, -0.5f, -0.5f)); redDirectional.setCapability(AmbientLight.ALLOW_STATE_WRITE); redDirectional.setInfluencingBounds(worldBounds); scene.addChild(redDirectional); // Yellow directional light yellowDirectional = new DirectionalLight(); yellowDirectional.setEnable(yellowDirectionalOnOff); yellowDirectional.setColor(new Color3f(1.0f, 0.8f, 0.0f)); yellowDirectional.setDirection(new Vector3f(-1.0f, 0.5f, 1.0f)); yellowDirectional.setCapability(AmbientLight.ALLOW_STATE_WRITE); yellowDirectional.setInfluencingBounds(worldBounds); scene.addChild(yellowDirectional); // Orange point light orangePoint = new PointLight(); orangePoint.setEnable(orangePointOnOff); orangePoint.setColor(new Color3f(1.0f, 0.5f, 0.0f)); orangePoint.setPosition(new Point3f(0.0f, 0.5f, 0.0f)); orangePoint.setCapability(AmbientLight.ALLOW_STATE_WRITE); orangePoint.setInfluencingBounds(worldBounds); scene.addChild(orangePoint); // Ground scene.addChild(ground); // Dome scene.addChild(dome); // Spur 1's Group g = buildRing(spur1Group); scene.addChild(g); // Spur 2's TransformGroup tg = new TransformGroup(); tr = new Transform3D(); tr.rotY(0.3927); tg.setTransform(tr); g = buildRing(spur2Group); tg.addChild(g); scene.addChild(tg); // Spur 3's g = buildRing(spur3Group); scene.addChild(g); // Spur 4's tg = new TransformGroup(); tg.setTransform(tr); g = buildRing(spur4Group); tg.addChild(g); scene.addChild(tg); return scene; }
From source file:ExLinearFog.java
public ColumnScene(Component observer) { BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Add a few lights AmbientLight ambient = new AmbientLight(); ambient.setEnable(true);/*from ww w . j a v a 2 s .c o m*/ ambient.setColor(new Color3f(0.2f, 0.2f, 0.2f)); ambient.setInfluencingBounds(worldBounds); addChild(ambient); DirectionalLight dir1 = new DirectionalLight(); dir1.setEnable(true); dir1.setColor(new Color3f(1.0f, 1.0f, 1.0f)); dir1.setDirection(new Vector3f(0.8f, -0.35f, 0.5f)); dir1.setInfluencingBounds(worldBounds); addChild(dir1); DirectionalLight dir2 = new DirectionalLight(); dir2.setEnable(true); dir2.setColor(new Color3f(0.75f, 0.75f, 1.0f)); dir2.setDirection(new Vector3f(-0.7f, -0.35f, -0.5f)); dir2.setInfluencingBounds(worldBounds); addChild(dir2); // Load textures TextureLoader texLoader = new TextureLoader("grass06.jpg", observer); Texture grassTex = texLoader.getTexture(); if (grassTex == null) System.err.println("Cannot load grass06.jpg texture"); else { grassTex.setBoundaryModeS(Texture.WRAP); grassTex.setBoundaryModeT(Texture.WRAP); grassTex.setMinFilter(Texture.NICEST); grassTex.setMagFilter(Texture.NICEST); grassTex.setMipMapMode(Texture.BASE_LEVEL); grassTex.setEnable(true); } texLoader = new TextureLoader("marble10.jpg", observer); Texture walkTex = texLoader.getTexture(); if (walkTex == null) System.err.println("Cannot load marble10.jpg texture"); else { walkTex.setBoundaryModeS(Texture.WRAP); walkTex.setBoundaryModeT(Texture.WRAP); walkTex.setMinFilter(Texture.NICEST); walkTex.setMagFilter(Texture.NICEST); walkTex.setMipMapMode(Texture.BASE_LEVEL); walkTex.setEnable(true); } texLoader = new TextureLoader("granite07rev.jpg", observer); columnTex = texLoader.getTexture(); if (columnTex == null) System.err.println("Cannot load granite07rev.jpg texture"); else { columnTex.setBoundaryModeS(Texture.WRAP); columnTex.setBoundaryModeT(Texture.WRAP); columnTex.setMinFilter(Texture.NICEST); columnTex.setMagFilter(Texture.NICEST); columnTex.setMipMapMode(Texture.BASE_LEVEL); columnTex.setEnable(true); } // // Build the ground // +-----+---+-----+ // | | | | // | G | W | G | // | | | | // +-----+---+-----+ // // where "G" is grass, and "W" is a walkway between columns // Vector3f trans = new Vector3f(); Transform3D tr = new Transform3D(); TransformGroup tg; // Walkway appearance Appearance walkApp = new Appearance(); Material walkMat = new Material(); walkMat.setAmbientColor(0.5f, 0.5f, 0.5f); walkMat.setDiffuseColor(1.0f, 1.0f, 1.0f); walkMat.setSpecularColor(0.0f, 0.0f, 0.0f); walkApp.setMaterial(walkMat); TextureAttributes walkTexAtt = new TextureAttributes(); walkTexAtt.setTextureMode(TextureAttributes.MODULATE); walkTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); tr.setIdentity(); tr.setScale(new Vector3d(1.0, 6.0, 1.0)); walkTexAtt.setTextureTransform(tr); walkApp.setTextureAttributes(walkTexAtt); if (walkTex != null) walkApp.setTexture(walkTex); // Grass appearance Appearance grassApp = new Appearance(); Material grassMat = new Material(); grassMat.setAmbientColor(0.5f, 0.5f, 0.5f); grassMat.setDiffuseColor(1.0f, 1.0f, 1.0f); grassMat.setSpecularColor(0.0f, 0.0f, 0.0f); grassApp.setMaterial(grassMat); TextureAttributes grassTexAtt = new TextureAttributes(); grassTexAtt.setTextureMode(TextureAttributes.MODULATE); grassTexAtt.setPerspectiveCorrectionMode(TextureAttributes.NICEST); tr.setIdentity(); tr.setScale(new Vector3d(2.0, 8.0, 1.0)); grassTexAtt.setTextureTransform(tr); grassApp.setTextureAttributes(grassTexAtt); if (grassTex != null) grassApp.setTexture(grassTex); // Left grass trans.set(-LawnWidth / 2.0f - WalkwayWidth / 2.0f, -1.6f, 0.0f); tr.set(trans); tg = new TransformGroup(tr); ElevationGrid grass1 = new ElevationGrid(2, // X dimension 2, // Z dimension LawnWidth, // X spacing LawnDepth, // Z spacing grassApp); // appearance tg.addChild(grass1); addChild(tg); // Right grass trans.set(LawnWidth / 2.0f + WalkwayWidth / 2.0f, -1.6f, 0.0f); tr.set(trans); tg = new TransformGroup(tr); ElevationGrid grass2 = new ElevationGrid(2, // X dimension 2, // Z dimension LawnWidth, // X spacing LawnDepth, // Z spacing grassApp); // appearance tg.addChild(grass2); addChild(tg); // Walkway trans.set(0.0f, -1.6f, 0.0f); tr.set(trans); tg = new TransformGroup(tr); ElevationGrid walk = new ElevationGrid(2, // X dimension 2, // Z dimension WalkwayWidth, // X spacing WalkwayDepth, // Z spacing walkApp); // appearance tg.addChild(walk); addChild(tg); // // Build several columns on the floor // SharedGroup column = buildSharedColumn(); Group columns = buildColumns(column); addChild(columns); }
From source file:ExText.java
/** * Builds the 3D universe by constructing a virtual universe (via * SimpleUniverse), a view platform (via SimpleUniverse), and a view (via * SimpleUniverse). A headlight is added and a set of behaviors initialized * to handle navigation types.//ww w. ja v a 2s. c o m */ protected void buildUniverse() { // // Create a SimpleUniverse object, which builds: // // - a Locale using the given hi-res coordinate origin // // - a ViewingPlatform which in turn builds: // - a MultiTransformGroup with which to move the // the ViewPlatform about // // - a ViewPlatform to hold the view // // - a BranchGroup to hold avatar geometry (if any) // // - a BranchGroup to hold view platform // geometry (if any) // // - a Viewer which in turn builds: // - a PhysicalBody which characterizes the user's // viewing preferences and abilities // // - a PhysicalEnvironment which characterizes the // user's rendering hardware and software // // - a JavaSoundMixer which initializes sound // support within the 3D environment // // - a View which renders the scene into a Canvas3D // // All of these actions could be done explicitly, but // using the SimpleUniverse utilities simplifies the code. // if (debug) System.err.println("Building scene graph..."); SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate // for the origin - // use default 1, // Number of transforms in MultiTransformGroup exampleCanvas, // Canvas3D into which to draw null); // URL for user configuration file - use defaults // // Get the viewer and create an audio device so that // sound will be enabled in this content. // Viewer viewer = universe.getViewer(); viewer.createAudioDevice(); // // Get the viewing platform created by SimpleUniverse. // From that platform, get the inner-most TransformGroup // in the MultiTransformGroup. That inner-most group // contains the ViewPlatform. It is this inner-most // TransformGroup we need in order to: // // - add a "headlight" that always aims forward from // the viewer // // - change the viewing direction in a "walk" style // // The inner-most TransformGroup's transform will be // changed by the walk behavior (when enabled). // ViewingPlatform viewingPlatform = universe.getViewingPlatform(); exampleViewTransform = viewingPlatform.getViewPlatformTransform(); // // Create a "headlight" as a forward-facing directional light. // Set the light's bounds to huge. Since we want the light // on the viewer's "head", we need the light within the // TransformGroup containing the ViewPlatform. The // ViewingPlatform class creates a handy hook to do this // called "platform geometry". The PlatformGeometry class is // subclassed off of BranchGroup, and is intended to contain // a description of the 3D platform itself... PLUS a headlight! // So, to add the headlight, create a new PlatformGeometry group, // add the light to it, then add that platform geometry to the // ViewingPlatform. // BoundingSphere allBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100000.0); PlatformGeometry pg = new PlatformGeometry(); headlight = new DirectionalLight(); headlight.setColor(White); headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f)); headlight.setInfluencingBounds(allBounds); headlight.setCapability(Light.ALLOW_STATE_WRITE); pg.addChild(headlight); viewingPlatform.setPlatformGeometry(pg); // // Create the 3D content BranchGroup, containing: // // - a TransformGroup who's transform the examine behavior // will change (when enabled). // // - 3D geometry to view // // Build the scene root BranchGroup sceneRoot = new BranchGroup(); // Build a transform that we can modify exampleSceneTransform = new TransformGroup(); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND); // // Build the scene, add it to the transform, and add // the transform to the scene root // if (debug) System.err.println(" scene..."); Group scene = this.buildScene(); exampleSceneTransform.addChild(scene); sceneRoot.addChild(exampleSceneTransform); // // Create a pair of behaviors to implement two navigation // types: // // - "examine": a style where mouse drags rotate about // the scene's origin as if it is an object under // examination. This is similar to the "Examine" // navigation type used by VRML browsers. // // - "walk": a style where mouse drags rotate about // the viewer's center as if the viewer is turning // about to look at a scene they are in. This is // similar to the "Walk" navigation type used by // VRML browsers. // // Aim the examine behavior at the scene's TransformGroup // and add the behavior to the scene root. // // Aim the walk behavior at the viewing platform's // TransformGroup and add the behavior to the scene root. // // Enable one (and only one!) of the two behaviors // depending upon the current navigation type. // examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform // gorup // to // modify exampleFrame); // Parent frame for cusor changes examineBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(examineBehavior); walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform // group to // modify exampleFrame); // Parent frame for cusor changes walkBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(walkBehavior); if (navigationType == Walk) { examineBehavior.setEnable(false); walkBehavior.setEnable(true); } else { examineBehavior.setEnable(true); walkBehavior.setEnable(false); } // // Compile the scene branch group and add it to the // SimpleUniverse. // if (shouldCompile) sceneRoot.compile(); universe.addBranchGraph(sceneRoot); reset(); }
From source file:ffx.potential.MolecularAssembly.java
/** * <p>//ww w. ja v a 2 s.c o m * createBox</p> */ public void createBox() { int vertices = 8; LineArray la = new LineArray(4 * vertices, GeometryArray.COORDINATES | GeometryArray.COLOR_4 | GeometryArray.NORMALS); la.setCapability(LineArray.ALLOW_COORDINATE_WRITE); la.setCapability(LineArray.ALLOW_COORDINATE_READ); la.setCapability(LineArray.ALLOW_COLOR_WRITE); la.setCapability(LineArray.ALLOW_COUNT_READ); la.setCapability(LineArray.ALLOW_INTERSECT); la.setCapability(LineArray.ALLOW_FORMAT_READ); // Create a normal // for (ListIterator li = bondlist.listIterator(); li.hasNext(); ){ // la.setCoordinate(i, a1); // la.setColor(i, col); // la.setNormal(i++, a1); // } ColoringAttributes cola = new ColoringAttributes(new Color3f(), ColoringAttributes.SHADE_GOURAUD); Appearance app = new Appearance(); lineAttributes = new LineAttributes(); lineAttributes.setLineWidth(RendererCache.bondwidth); lineAttributes.setCapability(LineAttributes.ALLOW_WIDTH_WRITE); lineAttributes.setLineAntialiasingEnable(true); app.setLineAttributes(lineAttributes); app.setCapability(Appearance.ALLOW_LINE_ATTRIBUTES_READ); app.setCapability(Appearance.ALLOW_LINE_ATTRIBUTES_WRITE); RenderingAttributes ra = new RenderingAttributes(); ra.setAlphaTestValue(0.1f); ra.setAlphaTestFunction(RenderingAttributes.GREATER); ra.setDepthBufferEnable(true); ra.setDepthBufferWriteEnable(true); app.setRenderingAttributes(ra); app.setColoringAttributes(cola); Shape3D wireframe = new Shape3D(la, app); // PickTool.setCapabilities(wire, PickTool.INTERSECT_COORD); wireframe.setUserData(this); wireframe.setBounds(new BoundingSphere(new Point3d(0, 0, 0), 10.0)); try { wireframe.setBoundsAutoCompute(false); } catch (Exception e) { e.printStackTrace(); } wireframe.setCapability(Shape3D.ALLOW_GEOMETRY_READ); wireframe.setCapability(Shape3D.ALLOW_APPEARANCE_READ); // return wire; }
From source file:AvatarTest.java
public Bounds getGeometryBounds() { return new BoundingSphere(new Point3d(0, 0, 0), 0.2); }
From source file:Demo3D.java
/** * Create the subgraph #1//from w w w . j a v a2 s . c om * * @return javax.media.j3d.BranchGroup brGr1 - the root of the subgraph #1 */ public BranchGroup mySubGraph1() { // Create the BranchGroup brGr1 of the subgraph #1. brGr1 = new BranchGroup(); // Create and attach the coordinate system to the brGr1. coordSyst = new CoordSyst(1.0f, 1.0f, 0.0f, // Color of the x-axis 0.0f, 0.0f, 1.0f, // Color of the y-axis 1.0f, 0.0f, 0.0f, // Color of the z-axis 0.75f); // Lenght of the 3 axes brGr1.addChild(coordSyst); // Background setting for the scene. newTextureLoader = new NewTextureLoader("Images/Ciel_Out.jpg"); newTextureLoader.setImageObserver(newTextureLoader.getImageObserver()); backGr = new Background(newTextureLoader.getImage()); backGr.setImageScaleMode(Background.SCALE_FIT_ALL); boundsBackGr = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 1000.0); backGr.setApplicationBounds(boundsBackGr); brGr1.addChild(backGr); // A BoundingSphere instance as general bounding region. boundsGen = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Lighting of the scene. // Create and attach an ambient light. ambientLight = new AmbientLight(true, new Color3f(0.2f, 0.2f, 0.2f)); ambientLight.setInfluencingBounds(boundsGen); brGr1.addChild(ambientLight); // Create and attach a point light. pointLight = new PointLight(true, new Color3f(1.0f, 1.0f, 0.3f), new Point3f(-100.0f, 0.0f, 100.0f), new Point3f(0.0f, 0.05f, 0.1f)); pointLight.setInfluencingBounds(boundsGen); brGr1.addChild(pointLight); // Create and attach a directional light. directionalLight = new DirectionalLight(true, new Color3f(0.8f, 1.0f, 1.0f), new Vector3f(-0.5f, -0.5f, -0.5f)); directionalLight.setInfluencingBounds(boundsGen); brGr1.addChild(directionalLight); // Create the borders of the virtual universe for the inside view of the // scene. bordersIn = new BordersIn(dimUniverse); brGr1.addChild(bordersIn.myInternalUniverse()); // Create the borders of the virtual universe for the outside view of // the scene. bordersOut = new BordersOut(dimUniverse); brGr1.addChild(bordersOut.myExternalUniverse()); // Compile the subgraph to optimize the performances. brGr1.compile(); // Return the final version of the BranchGroup node brGr1 return brGr1; }
From source file:ExSound.java
private Group buildTumblingBox(float width, float height, float depth, Appearance app, int xDur, int yDur, int zDur) { BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Build a box to tumble Shape3D box = buildBox(width, height, depth, app); // Build a set of nested transform groups. Attach // to each one a behavior that rotates around an X, // Y, or Z axis. Use different rotation speeds for // each axis to create a tumbling effect. TransformGroup outerGroup = new TransformGroup(); outerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D yAxis = new Transform3D(); Alpha alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none xDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration RotationInterpolator rot = new RotationInterpolator(alpha, // Alpha // control outerGroup, // Target transform group yAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); outerGroup.addChild(rot);/* w w w .ja va 2 s . com*/ TransformGroup middleGroup = new TransformGroup(); middleGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D xAxis = new Transform3D(); xAxis.rotZ(-1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none yDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control middleGroup, // Target transform group xAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); middleGroup.addChild(rot); outerGroup.addChild(middleGroup); TransformGroup innerGroup = new TransformGroup(); innerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D zAxis = new Transform3D(); zAxis.rotX(1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none zDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control innerGroup, // Target transform group zAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); innerGroup.addChild(rot); middleGroup.addChild(innerGroup); innerGroup.addChild(box); return outerGroup; }
From source file:Demo3D.java
/** * Create the subgraph #2/* w w w . j a va 2 s . c o m*/ * * @return javax.media.j3d.BranchGroup brGr2 - the root of the subgraph #2 */ public BranchGroup mySubGraph2() { // Create the BranchGroup node brGr2 of the second subgraph. brGr2 = new BranchGroup(); // A BoundingSphere instance as general bounding region. boundsGen = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Create a Transform3D instance rot1 to perform the necessary // "static rotation" for the desired cube's position. rot1 = new Transform3D(); // Rotation of Pi/2 - arctan(1/sqrt(2)) = 0.955 rad about the // (1,0,-1)-axis passing through the origin. axe_rot = new AxisAngle4f(1.0f, 0.0f, -1.0f, 0.955f); rot1.setRotation(axe_rot); // Create the first TransformGroup node trGr2_1 and attach the // "static rotation" rot1 instance to it. trGr2_1 = new TransformGroup(rot1); // Create and attach a coordinate system to the TransformGroup node // trGr2_1 of the subgraph #2, that is to the cube. coordSyst = new CoordSyst(1.0f, 1.0f, 0.0f, // Color of the x-axis 0.0f, 0.0f, 1.0f, // Color of the y-axis 1.0f, 0.0f, 0.0f, // Color of the z-axis 0.4f); // Lenght of the 3 axes trGr2_1.addChild(coordSyst); // Create the ColorCube (Shape3D) and attach it to the // TransformGroup node trGr2_1 of the subgraph #2. colorCube = new ColorCube(0.5f); trGr2_1.addChild(colorCube); // Create the second TransformGroup node trGr2_2. trGr2_2 = new TransformGroup(); // With the ALLOW_TRANSFORM_WRITE capability, we allow the // modification of the TransformGroup's code by the behavior's // code at run time. trGr2_2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Attach the first node trGr2_1 to the second node trGr2_2. trGr2_2.addChild(trGr2_1); // Prepare the RotationInterpolator (Behavior) for the // cube's rotation about the y-axis. trans1 = new Transform3D(); // Create the alpha(t) function. rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 10000, 0, 0, 0, 0, 0); // Create the cube's rotation about the y-axis. rotator = new RotationInterpolator(rotationAlpha, trGr2_2, trans1, 0.0f, (float) Math.PI * 2.0f); rotator.setSchedulingBounds(boundsGen); trGr2_2.addChild(rotator); brGr2.addChild(trGr2_2); // Compile the subgraph to optimize the performances. brGr2.compile(); // Return the final version of the BranchGroup node brGr2 return brGr2; }
From source file:GearTest.java
public BranchGroup createGearBox(int toothCount) { Transform3D tempTransform = new Transform3D(); // Create the root of the branch graph BranchGroup branchRoot = createBranchEnvironment(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); t3d.setScale(0.4);/* w ww . ja va 2s.c o m*/ objScale.setTransform(t3d); branchRoot.addChild(objScale); // Create an Appearance. Appearance look = new Appearance(); Color3f objColor = new Color3f(0.5f, 0.5f, 0.6f); Color3f black = new Color3f(0.0f, 0.0f, 0.0f); Color3f white = new Color3f(1.0f, 1.0f, 1.0f); look.setMaterial(new Material(objColor, black, objColor, white, 100.0f)); // Create the transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add it to the // root of the subgraph. TransformGroup gearboxTrans = new TransformGroup(); gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objScale.addChild(gearboxTrans); // Create a bounds for the mouse behavior methods BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Define the shaft base information int shaftCount = 4; int secondsPerRevolution = 8000; // Create the Shaft(s) Shaft shafts[] = new Shaft[shaftCount]; TransformGroup shaftTGs[] = new TransformGroup[shaftCount]; Alpha shaftAlphas[] = new Alpha[shaftCount]; RotationInterpolator shaftRotors[] = new RotationInterpolator[shaftCount]; Transform3D shaftAxis[] = new Transform3D[shaftCount]; // Note: the following arrays we're incorporated to make changing // the gearbox easier. float shaftRatios[] = new float[shaftCount]; shaftRatios[0] = 1.0f; shaftRatios[1] = 0.5f; shaftRatios[2] = 0.75f; shaftRatios[3] = 5.0f; float shaftRadius[] = new float[shaftCount]; shaftRadius[0] = 0.2f; shaftRadius[1] = 0.2f; shaftRadius[2] = 0.2f; shaftRadius[3] = 0.2f; float shaftLength[] = new float[shaftCount]; shaftLength[0] = 1.8f; shaftLength[1] = 0.8f; shaftLength[2] = 0.8f; shaftLength[3] = 0.8f; float shaftDirection[] = new float[shaftCount]; shaftDirection[0] = 1.0f; shaftDirection[1] = -1.0f; shaftDirection[2] = 1.0f; shaftDirection[3] = -1.0f; Vector3d shaftPlacement[] = new Vector3d[shaftCount]; shaftPlacement[0] = new Vector3d(-0.75, -0.9, 0.0); shaftPlacement[1] = new Vector3d(0.75, -0.9, 0.0); shaftPlacement[2] = new Vector3d(0.75, 0.35, 0.0); shaftPlacement[3] = new Vector3d(-0.75, 0.60, -0.7); // Create the shafts. for (int i = 0; i < shaftCount; i++) { shafts[i] = new Shaft(shaftRadius[i], shaftLength[i], 25, look); } // Create a transform group node for placing each shaft for (int i = 0; i < shaftCount; i++) { shaftTGs[i] = new TransformGroup(); gearboxTrans.addChild(shaftTGs[i]); shaftTGs[i].getTransform(tempTransform); tempTransform.setTranslation(shaftPlacement[i]); shaftTGs[i].setTransform(tempTransform); shaftTGs[i].addChild(shafts[i]); } // Add rotation interpolators to rotate the shaft in the appropriate // direction and at the appropriate rate for (int i = 0; i < shaftCount; i++) { shaftAlphas[i] = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, (long) (secondsPerRevolution * shaftRatios[i]), 0, 0, 0, 0, 0); shaftAxis[i] = new Transform3D(); shaftAxis[i].rotX(Math.PI / 2.0); shaftRotors[i] = new RotationInterpolator(shaftAlphas[i], shafts[i], shaftAxis[i], 0.0f, shaftDirection[i] * (float) Math.PI * 2.0f); shaftRotors[i].setSchedulingBounds(bounds); shaftTGs[i].addChild(shaftRotors[i]); } // Define the gear base information. Again, these arrays exist to // make the process of changing the GearBox via an editor faster int gearCount = 5; float valleyToCircularPitchRatio = .15f; float pitchCircleRadius = 1.0f; float addendum = 0.05f; float dedendum = 0.05f; float gearThickness = 0.3f; float toothTipThickness = 0.27f; // Create an array of gears and their associated information SpurGear gears[] = new SpurGear[gearCount]; TransformGroup gearTGs[] = new TransformGroup[gearCount]; int gearShaft[] = new int[gearCount]; gearShaft[0] = 0; gearShaft[1] = 1; gearShaft[2] = 2; gearShaft[3] = 0; gearShaft[4] = 3; float ratio[] = new float[gearCount]; ratio[0] = 1.0f; ratio[1] = 0.5f; ratio[2] = 0.75f; ratio[3] = 0.25f; ratio[4] = 1.25f; Vector3d placement[] = new Vector3d[gearCount]; placement[0] = new Vector3d(0.0, 0.0, 0.0); placement[1] = new Vector3d(0.0, 0.0, 0.0); placement[2] = new Vector3d(0.0, 0.0, 0.0); placement[3] = new Vector3d(0.0, 0.0, -0.7); placement[4] = new Vector3d(0.0, 0.0, 0.0); // Create the gears. for (int i = 0; i < gearCount; i++) { gears[i] = new SpurGearThinBody(((int) ((float) toothCount * ratio[i])), pitchCircleRadius * ratio[i], shaftRadius[0], addendum, dedendum, gearThickness, toothTipThickness, valleyToCircularPitchRatio, look); } // Create a transform group node for arranging the gears on a shaft // and attach the gear to its associated shaft for (int i = 0; i < gearCount; i++) { gearTGs[i] = new TransformGroup(); gearTGs[i].getTransform(tempTransform); tempTransform .rotZ((shaftDirection[gearShaft[i]] == -1.0) ? gears[i].getCircularPitchAngle() / -2.0f : 0.0f); tempTransform.setTranslation(placement[i]); gearTGs[i].setTransform(tempTransform); gearTGs[i].addChild(gears[i]); shafts[gearShaft[i]].addChild(gearTGs[i]); } // Have Java 3D perform optimizations on this scene graph. branchRoot.compile(); return branchRoot; }