Java examples for Machine Learning AI:weka
use weka to do Attribute Selection
/*/*from w ww. jav a 2 s .co m*/ * How to use WEKA API in Java * Copyright (C) 2014 * @author Dr Noureddin M. Sadawi (noureddin.sadawi@gmail.com) * * This program is free software: you can redistribute it and/or modify * it as you wish ... * I ask you only, as a professional courtesy, to cite my name, web page * and my YouTube Channel! * */ package weka.api; //import required classes import weka.attributeSelection.CfsSubsetEval; import weka.attributeSelection.GreedyStepwise; import weka.core.Instances; import weka.filters.Filter; import weka.filters.supervised.attribute.AttributeSelection; import weka.core.converters.ArffSaver; import java.io.File; import weka.core.converters.ConverterUtils.DataSource; public class AttrSelection { public static void main(String args[]) throws Exception { //load dataset DataSource source = new DataSource( "/home/likewise-open/ACADEMIC/csstnns/Desktop/qdb1.arff"); Instances dataset = source.getDataSet(); //create AttributeSelection object AttributeSelection filter = new AttributeSelection(); //create evaluator and search algorithm objects CfsSubsetEval eval = new CfsSubsetEval(); GreedyStepwise search = new GreedyStepwise(); //set the algorithm to search backward search.setSearchBackwards(true); //set the filter to use the evaluator and search algorithm filter.setEvaluator(eval); filter.setSearch(search); //specify the dataset filter.setInputFormat(dataset); //apply Instances newData = Filter.useFilter(dataset, filter); //save ArffSaver saver = new ArffSaver(); saver.setInstances(newData); saver.setFile(new File( "/home/likewise-open/ACADEMIC/csstnns/Desktop/qdb3.arff")); saver.writeBatch(); } }