Java examples for Machine Learning AI:weka
weka Classifier With Filter
/*/*from ww w . j av a 2 s. c o m*/ * How to use WEKA API in Java * Copyright (C) 2014 * @author Dr Noureddin M. Sadawi (noureddin.sadawi@gmail.com) * * This program is free software: you can redistribute it and/or modify * it as you wish ... * I ask you only, as a professional courtesy, to cite my name, web page * and my YouTube Channel! * */ package weka.api; //import required classes import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.classifiers.meta.FilteredClassifier; import weka.classifiers.trees.J48; import weka.filters.unsupervised.attribute.Remove; public class ClassifierWithFilter { public static void main(String args[]) throws Exception { //load dataset DataSource source = new DataSource( "/home/likewise-open/ACADEMIC/csstnns/Desktop/iris.arff"); Instances dataset = source.getDataSet(); //set class index to the last attribute dataset.setClassIndex(dataset.numAttributes() - 1); //the base classifier J48 tree = new J48(); //the filter Remove remove = new Remove(); //remove.setAttributeIndices("1"); String[] opts = new String[] { "-R", "1" }; //set the filter options remove.setOptions(opts); //Create the FilteredClassifier object FilteredClassifier fc = new FilteredClassifier(); //specify filter fc.setFilter(remove); //specify base classifier fc.setClassifier(tree); //Build the meta-classifier fc.buildClassifier(dataset); //System.out.println(tree.graph()); } }