Java examples for Machine Learning AI:weka
use weka do Classification
/*/*from w w w .j a v a2s . c o m*/ * How to use WEKA API in Java * Copyright (C) 2014 * @author Dr Noureddin M. Sadawi (noureddin.sadawi@gmail.com) * * This program is free software: you can redistribute it and/or modify * it as you wish ... * I ask you only, as a professional courtesy, to cite my name, web page * and my YouTube Channel! * */ package weka.api; //import required classes import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.trees.J48; import weka.classifiers.functions.SMO; public class Classification { public static void main(String args[]) throws Exception { //load dataset DataSource source = new DataSource( "/home/likewise-open/ACADEMIC/csstnns/Desktop/iris.arff"); Instances dataset = source.getDataSet(); //set class index to the last attribute dataset.setClassIndex(dataset.numAttributes() - 1); //create and build the classifier! NaiveBayes nb = new NaiveBayes(); nb.buildClassifier(dataset); //print out capabilities System.out.println(nb.getCapabilities().toString()); SMO svm = new SMO(); svm.buildClassifier(dataset); System.out.println(svm.getCapabilities().toString()); String[] options = new String[4]; options[0] = "-C"; options[1] = "0.11"; options[2] = "-M"; options[3] = "3"; J48 tree = new J48(); tree.setOptions(options); tree.buildClassifier(dataset); System.out.println(tree.getCapabilities().toString()); System.out.println(tree.graph()); } }