Java examples for Machine Learning AI:weka
use weka Attribute Filter
/*// w w w .j a v a2 s. c o m * How to use WEKA API in Java * Copyright (C) 2014 * @author Dr Noureddin M. Sadawi (noureddin.sadawi@gmail.com) * * This program is free software: you can redistribute it and/or modify * it as you wish ... * I ask you only, as a professional courtesy, to cite my name, web page * and my YouTube Channel! * */ package weka.api; //import required classes import weka.core.Instances; import weka.core.converters.ArffSaver; import java.io.File; import weka.core.converters.ConverterUtils.DataSource; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; public class AttributeFilter { public static void main(String args[]) throws Exception { //load dataset DataSource source = new DataSource( "/home/likewise-open/ACADEMIC/csstnns/Desktop/qdb.arff"); Instances dataset = source.getDataSet(); //use a simple filter to remove a certain attribute //set up options to remove 1st attribute String[] opts = new String[] { "-R", "1" }; //create a Remove object (this is the filter class) Remove remove = new Remove(); //set the filter options remove.setOptions(opts); //pass the dataset to the filter remove.setInputFormat(dataset); //apply the filter Instances newData = Filter.useFilter(dataset, remove); //now save the dataset to a new file as we learned before ArffSaver saver = new ArffSaver(); saver.setInstances(newData); saver.setFile(new File( "/home/likewise-open/ACADEMIC/csstnns/Desktop/qdb1.arff")); saver.writeBatch(); } }