sample.generation.relation.attributeSelection.impl.ChiSquaredWithYatesCorrectionAttributeEval.java Source code

Java tutorial

Introduction

Here is the source code for sample.generation.relation.attributeSelection.impl.ChiSquaredWithYatesCorrectionAttributeEval.java

Source

package sample.generation.relation.attributeSelection.impl;

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ChiSquaredAttributeEval.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

import weka.attributeSelection.ASEvaluation;
import weka.attributeSelection.AttributeEvaluator;
import weka.core.Capabilities;
import weka.core.ContingencyTables;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.Capabilities.Capability;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.NumericToBinary;

import java.util.Enumeration;
import java.util.Vector;

/** 
 <!-- globalinfo-start -->
 * ChiSquaredWithYatesCorrectionAttributeEval :<br/>
 * <br/>
 * Evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class.<br/>
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -M
 *  treat missing values as a seperate value.</pre>
 * 
 * <pre> -B
 *  just binarize numeric attributes instead 
 *  of properly discretizing them.</pre>
 * 
 <!-- options-end -->
 *
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision: 5511 $ 
 * @see Discretize
 * @see NumericToBinary
 */
public class ChiSquaredWithYatesCorrectionAttributeEval extends ASEvaluation
        implements AttributeEvaluator, OptionHandler {

    /** for serialization */
    static final long serialVersionUID = -8316857822521717692L;

    private static final double EXPECTED = 5.0;

    /** Treat missing values as a seperate value */
    private boolean m_missing_merge;

    /** Just binarize numeric attributes */
    private boolean m_Binarize;

    /** The chi-squared value for each attribute */
    private double[] m_ChiSquareds;

    /**
     * Returns a string describing this attribute evaluator
     * @return a description of the evaluator suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {
        return "ChiSquaredAttributeEval :\n\nEvaluates the worth of an attribute "
                + "by computing the value of the chi-squared statistic with respect to the class.\n";
    }

    /**
     * Constructor
     */
    public ChiSquaredWithYatesCorrectionAttributeEval() {
        resetOptions();
    }

    /**
     * Returns an enumeration describing the available options
     * @return an enumeration of all the available options
     **/
    public Enumeration listOptions() {
        Vector newVector = new Vector(2);
        newVector.addElement(new Option("\ttreat missing values as a seperate " + "value.", "M", 0, "-M"));
        newVector.addElement(
                new Option("\tjust binarize numeric attributes instead \n" + "\tof properly discretizing them.",
                        "B", 0, "-B"));
        return newVector.elements();
    }

    /**
     * Parses a given list of options. <p/>
     *
    <!-- options-start -->
     * Valid options are: <p/>
     * 
     * <pre> -M
     *  treat missing values as a seperate value.</pre>
     * 
     * <pre> -B
     *  just binarize numeric attributes instead 
     *  of properly discretizing them.</pre>
     * 
    <!-- options-end -->
     *
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    public void setOptions(String[] options) throws Exception {

        resetOptions();
        setMissingMerge(!(Utils.getFlag('M', options)));
        setBinarizeNumericAttributes(Utils.getFlag('B', options));
    }

    /**
     * Gets the current settings.
     *
     * @return an array of strings suitable for passing to setOptions()
     */
    public String[] getOptions() {
        String[] options = new String[2];
        int current = 0;

        if (!getMissingMerge()) {
            options[current++] = "-M";
        }
        if (getBinarizeNumericAttributes()) {
            options[current++] = "-B";
        }

        while (current < options.length) {
            options[current++] = "";
        }

        return options;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String binarizeNumericAttributesTipText() {
        return "Just binarize numeric attributes instead of properly discretizing them.";
    }

    /**
     * Binarize numeric attributes.
     *
     * @param b true=binarize numeric attributes
     */
    public void setBinarizeNumericAttributes(boolean b) {
        m_Binarize = b;
    }

    /**
     * get whether numeric attributes are just being binarized.
     *
     * @return true if missing values are being distributed.
     */
    public boolean getBinarizeNumericAttributes() {
        return m_Binarize;
    }

    /**
     * Returns the tip text for this property
     * @return tip text for this property suitable for
     * displaying in the explorer/experimenter gui
     */
    public String missingMergeTipText() {
        return "Distribute counts for missing values. Counts are distributed "
                + "across other values in proportion to their frequency. Otherwise, "
                + "missing is treated as a separate value.";
    }

    /**
     * distribute the counts for missing values across observed values
     *
     * @param b true=distribute missing values.
     */
    public void setMissingMerge(boolean b) {
        m_missing_merge = b;
    }

    /**
     * get whether missing values are being distributed or not
     *
     * @return true if missing values are being distributed.
     */
    public boolean getMissingMerge() {
        return m_missing_merge;
    }

    /**
     * Returns the capabilities of this evaluator.
     *
     * @return            the capabilities of this evaluator
     * @see               Capabilities
     */
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Initializes a chi-squared attribute evaluator.
     * Discretizes all attributes that are numeric.
     *
     * @param data set of instances serving as training data 
     * @throws Exception if the evaluator has not been 
     * generated successfully
     */
    public void buildEvaluator(Instances data) throws Exception {

        // can evaluator handle data?
        getCapabilities().testWithFail(data);

        int classIndex = data.classIndex();
        int numInstances = data.numInstances();

        if (!m_Binarize) {
            Discretize disTransform = new Discretize();
            disTransform.setUseBetterEncoding(true);
            disTransform.setInputFormat(data);
            data = Filter.useFilter(data, disTransform);
        } else {
            NumericToBinary binTransform = new NumericToBinary();
            binTransform.setInputFormat(data);
            data = Filter.useFilter(data, binTransform);
        }
        int numClasses = data.attribute(classIndex).numValues();

        // Reserve space and initialize counters
        double[][][] counts = new double[data.numAttributes()][][];
        for (int k = 0; k < data.numAttributes(); k++) {
            if (k != classIndex) {
                int numValues = data.attribute(k).numValues();
                counts[k] = new double[numValues + 1][numClasses + 1];
            }
        }

        // Initialize counters
        double[] temp = new double[numClasses + 1];
        for (int k = 0; k < numInstances; k++) {
            Instance inst = data.instance(k);
            if (inst.classIsMissing()) {
                temp[numClasses] += inst.weight();
            } else {
                temp[(int) inst.classValue()] += inst.weight();
            }
        }
        for (int k = 0; k < counts.length; k++) {
            if (k != classIndex) {
                for (int i = 0; i < temp.length; i++) {
                    counts[k][0][i] = temp[i];
                }
            }
        }

        // Get counts
        for (int k = 0; k < numInstances; k++) {
            Instance inst = data.instance(k);
            for (int i = 0; i < inst.numValues(); i++) {
                if (inst.index(i) != classIndex) {
                    if (inst.isMissingSparse(i) || inst.classIsMissing()) {
                        if (!inst.isMissingSparse(i)) {
                            counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight();
                            counts[inst.index(i)][0][numClasses] -= inst.weight();
                        } else if (!inst.classIsMissing()) {
                            counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst
                                    .classValue()] += inst.weight();
                            counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                        } else {
                            counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst
                                    .weight();
                            counts[inst.index(i)][0][numClasses] -= inst.weight();
                        }
                    } else {
                        counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight();
                        counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight();
                    }
                }
            }
        }

        // distribute missing counts if required
        if (m_missing_merge) {

            for (int k = 0; k < data.numAttributes(); k++) {
                if (k != classIndex) {
                    int numValues = data.attribute(k).numValues();

                    // Compute marginals
                    double[] rowSums = new double[numValues];
                    double[] columnSums = new double[numClasses];
                    double sum = 0;
                    for (int i = 0; i < numValues; i++) {
                        for (int j = 0; j < numClasses; j++) {
                            rowSums[i] += counts[k][i][j];
                            columnSums[j] += counts[k][i][j];
                        }
                        sum += rowSums[i];
                    }

                    if (Utils.gr(sum, 0)) {
                        double[][] additions = new double[numValues][numClasses];

                        // Compute what needs to be added to each row
                        for (int i = 0; i < numValues; i++) {
                            for (int j = 0; j < numClasses; j++) {
                                additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j];
                            }
                        }

                        // Compute what needs to be added to each column
                        for (int i = 0; i < numClasses; i++) {
                            for (int j = 0; j < numValues; j++) {
                                additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses];
                            }
                        }

                        // Compute what needs to be added to each cell
                        for (int i = 0; i < numClasses; i++) {
                            for (int j = 0; j < numValues; j++) {
                                additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses];
                            }
                        }

                        // Make new contingency table
                        double[][] newTable = new double[numValues][numClasses];
                        for (int i = 0; i < numValues; i++) {
                            for (int j = 0; j < numClasses; j++) {
                                newTable[i][j] = counts[k][i][j] + additions[i][j];
                            }
                        }
                        counts[k] = newTable;
                    }
                }
            }
        }

        // Compute chi-squared values
        m_ChiSquareds = new double[data.numAttributes()];
        for (int i = 0; i < data.numAttributes(); i++) {
            if (i != classIndex) {
                m_ChiSquareds[i] = chiVal(ContingencyTables.reduceMatrix(counts[i]));
            }
        }
    }

    /**
     * Computes chi-squared statistic for a contingency table.
     *
     * @param matrix the contigency table
     * @param useYates is Yates' correction to be used?
     * @return the value of the chi-squared statistic
     */
    public static double chiVal(double[][] matrix) {

        int df, nrows, ncols, row, col;
        double[] rtotal, ctotal;
        double expect = 0, chival = 0, n = 0;
        boolean yates = true;

        nrows = matrix.length;
        ncols = matrix[0].length;
        rtotal = new double[nrows];
        ctotal = new double[ncols];
        for (row = 0; row < nrows; row++) {
            for (col = 0; col < ncols; col++) {
                rtotal[row] += matrix[row][col];
                ctotal[col] += matrix[row][col];
                n += matrix[row][col];
            }
        }
        df = (nrows - 1) * (ncols - 1);

        chival = 0.0;
        for (row = 0; row < nrows; row++) {
            if (Utils.gr(rtotal[row], 0)) {
                for (col = 0; col < ncols; col++) {
                    if (Utils.gr(ctotal[col], 0)) {
                        expect = (ctotal[col] * rtotal[row]) / n;

                        if ((df >= 1) && expect > EXPECTED) {
                            yates = false;
                        } else if (df <= 0) {
                            return 0;
                        } else if ((df <= 1) && (expect <= EXPECTED)) {
                            yates = true;
                        }

                        chival += chiCell(matrix[row][col], expect, yates);

                    }
                }
            }
        }
        return chival;
    }

    private static double chiCell(double freq, double expected, boolean yates) {

        // Cell in empty row and column?
        if (Utils.smOrEq(expected, 0)) {
            return 0;
        }

        // Compute difference between observed and expected value
        double diff = Math.abs(freq - expected);
        if (yates) {

            // Apply Yates' correction if wanted
            diff -= 0.5;

            // The difference should never be negative
            if (diff < 0) {
                diff = 0;
            }
        }

        // Return chi-value for the cell
        return (diff * diff / expected);
    }

    /**
     * Reset options to their default values
     */
    protected void resetOptions() {
        m_ChiSquareds = null;
        m_missing_merge = true;
        m_Binarize = false;
    }

    /**
     * evaluates an individual attribute by measuring its
     * chi-squared value.
     *
     * @param attribute the index of the attribute to be evaluated
     * @return the chi-squared value
     * @throws Exception if the attribute could not be evaluated
     */
    public double evaluateAttribute(int attribute) throws Exception {

        return m_ChiSquareds[attribute];
    }

    /**
     * Describe the attribute evaluator
     * @return a description of the attribute evaluator as a string
     */
    public String toString() {
        StringBuffer text = new StringBuffer();

        if (m_ChiSquareds == null) {
            text.append("Chi-squared attribute evaluator has not been built");
        } else {
            text.append("\tChi-squared Ranking Filter");
            if (!m_missing_merge) {
                text.append("\n\tMissing values treated as seperate");
            }
            if (m_Binarize) {
                text.append("\n\tNumeric attributes are just binarized");
            }
        }

        text.append("\n");
        return text.toString();
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 5511 $");
    }

    /**
     * Main method.
     *
     * @param args the options
     */
    public static void main(String[] args) {
        runEvaluator(new ChiSquaredWithYatesCorrectionAttributeEval(), args);
    }

}