weka.core.Instances.java Source code

Java tutorial

Introduction

Here is the source code for weka.core.Instances.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Instances.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.core;

import java.io.FileReader;
import java.io.IOException;
import java.io.Reader;
import java.io.Serializable;
import java.util.AbstractList;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map.Entry;
import java.util.Random;

import weka.core.converters.ArffLoader.ArffReader;
import weka.core.converters.ConverterUtils.DataSource;

/**
 * Class for handling an ordered set of weighted instances.
 * <p>
 * 
 * Typical usage:
 * <p>
 * 
 * <pre>
 * import weka.core.converters.ConverterUtils.DataSource;
 * ...
 * 
 * // Read all the instances in the file (ARFF, CSV, XRFF, ...)
 * DataSource source = new DataSource(filename);
 * Instances instances = source.getDataSet();
 * 
 * // Make the last attribute be the class
 * instances.setClassIndex(instances.numAttributes() - 1);
 * 
 * // Print header and instances.
 * System.out.println("\nDataset:\n");
 * System.out.println(instances);
 * 
 * ...
 * </pre>
 * <p>
 * 
 * All methods that change a set of instances are safe, ie. a change of a set of
 * instances does not affect any other sets of instances. All methods that
 * change a datasets's attribute information clone the dataset before it is
 * changed.
 * 
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @author FracPete (fracpete at waikato dot ac dot nz)
 * @version $Revision$
 */
public class Instances extends AbstractList<Instance> implements Serializable, RevisionHandler {

    /** for serialization */
    static final long serialVersionUID = -19412345060742748L;

    /** The filename extension that should be used for arff files */
    public final static String FILE_EXTENSION = ".arff";

    /**
     * The filename extension that should be used for bin. serialized instances
     * files
     */
    public final static String SERIALIZED_OBJ_FILE_EXTENSION = ".bsi";

    /** The keyword used to denote the start of an arff header */
    public final static String ARFF_RELATION = "@relation";

    /** The keyword used to denote the start of the arff data section */
    public final static String ARFF_DATA = "@data";

    /** The dataset's name. */
    protected/* @spec_public non_null@ */String m_RelationName;

    /** The attribute information. */
    protected/* @spec_public non_null@ */ArrayList<Attribute> m_Attributes;
    /*
     * public invariant (\forall int i; 0 <= i && i < m_Attributes.size();
     * m_Attributes.get(i) != null);
     */

    /** A map to quickly find attribute indices based on their names. */
    protected HashMap<String, Integer> m_NamesToAttributeIndices;

    /** The instances. */
    protected/* @spec_public non_null@ */ArrayList<Instance> m_Instances;

    /** The class attribute's index */
    protected int m_ClassIndex;
    // @ protected invariant classIndex() == m_ClassIndex;

    /**
     * The lines read so far in case of incremental loading. Since the
     * StreamTokenizer will be re-initialized with every instance that is read, we
     * have to keep track of the number of lines read so far.
     * 
     * @see #readInstance(Reader)
     */
    protected int m_Lines = 0;

    /**
     * Reads an ARFF file from a reader, and assigns a weight of one to each
     * instance. Lets the index of the class attribute be undefined (negative).
     * 
     * @param reader the reader
     * @throws IOException if the ARFF file is not read successfully
     */
    public Instances(/* @non_null@ */Reader reader) throws IOException {
        ArffReader arff = new ArffReader(reader, 1000, false);
        initialize(arff.getData(), 1000);
        arff.setRetainStringValues(true);
        Instance inst;
        while ((inst = arff.readInstance(this)) != null) {
            m_Instances.add(inst);
        }
        compactify();
    }

    /**
     * Reads the header of an ARFF file from a reader and reserves space for the
     * given number of instances. Lets the class index be undefined (negative).
     * 
     * @param reader the reader
     * @param capacity the capacity
     * @throws IllegalArgumentException if the header is not read successfully or
     *           the capacity is negative.
     * @throws IOException if there is a problem with the reader.
     * @deprecated instead of using this method in conjunction with the
     *             <code>readInstance(Reader)</code> method, one should use the
     *             <code>ArffLoader</code> or <code>DataSource</code> class
     *             instead.
     * @see weka.core.converters.ArffLoader
     * @see weka.core.converters.ConverterUtils.DataSource
     */
    // @ requires capacity >= 0;
    // @ ensures classIndex() == -1;
    @Deprecated
    public Instances(/* @non_null@ */Reader reader, int capacity) throws IOException {

        ArffReader arff = new ArffReader(reader, 0);
        Instances header = arff.getStructure();
        initialize(header, capacity);
        m_Lines = arff.getLineNo();
    }

    /**
     * Constructor copying all instances and references to the header information
     * from the given set of instances.
     * 
     * @param dataset the set to be copied
     */
    public Instances(/* @non_null@ */Instances dataset) {

        this(dataset, dataset.numInstances());

        dataset.copyInstances(0, this, dataset.numInstances());
    }

    /**
     * Constructor creating an empty set of instances. Copies references to the
     * header information from the given set of instances. Sets the capacity of
     * the set of instances to 0 if its negative.
     * 
     * @param dataset the instances from which the header information is to be
     *          taken
     * @param capacity the capacity of the new dataset
     */
    public Instances(/* @non_null@ */Instances dataset, int capacity) {
        initialize(dataset, capacity);
    }

    /**
     * initializes with the header information of the given dataset and sets the
     * capacity of the set of instances.
     * 
     * @param dataset the dataset to use as template
     * @param capacity the number of rows to reserve
     */
    protected void initialize(Instances dataset, int capacity) {
        if (capacity < 0) {
            capacity = 0;
        }

        // Strings only have to be "shallow" copied because
        // they can't be modified.
        m_ClassIndex = dataset.m_ClassIndex;
        m_RelationName = dataset.m_RelationName;
        m_Attributes = dataset.m_Attributes;
        m_NamesToAttributeIndices = dataset.m_NamesToAttributeIndices;
        m_Instances = new ArrayList<Instance>(capacity);
    }

    /**
     * Creates a new set of instances by copying a subset of another set.
     * 
     * @param source the set of instances from which a subset is to be created
     * @param first the index of the first instance to be copied
     * @param toCopy the number of instances to be copied
     * @throws IllegalArgumentException if first and toCopy are out of range
     */
    // @ requires 0 <= first;
    // @ requires 0 <= toCopy;
    // @ requires first + toCopy <= source.numInstances();
    public Instances(/* @non_null@ */Instances source, int first, int toCopy) {

        this(source, toCopy);

        if ((first < 0) || ((first + toCopy) > source.numInstances())) {
            throw new IllegalArgumentException("Parameters first and/or toCopy out " + "of range");
        }
        source.copyInstances(first, this, toCopy);
    }

    /**
     * Creates an empty set of instances. Uses the given attribute information.
     * Sets the capacity of the set of instances to 0 if its negative. Given
     * attribute information must not be changed after this constructor has been
     * used.
     * 
     * @param name the name of the relation
     * @param attInfo the attribute information
     * @param capacity the capacity of the set
     * @throws IllegalArgumentException if attribute names are not unique
     */
    public Instances(/* @non_null@ */String name, /* @non_null@ */ArrayList<Attribute> attInfo, int capacity) {

        // check whether the attribute names are unique
        HashSet<String> names = new HashSet<String>();
        StringBuffer nonUniqueNames = new StringBuffer();
        for (Attribute att : attInfo) {
            if (names.contains(att.name())) {
                nonUniqueNames.append("'" + att.name() + "' ");
            }
            names.add(att.name());
        }
        if (names.size() != attInfo.size()) {
            throw new IllegalArgumentException(
                    "Attribute names are not unique!" + " Causes: " + nonUniqueNames.toString());
        }
        names.clear();

        m_RelationName = name;
        m_ClassIndex = -1;
        m_Attributes = attInfo;
        m_NamesToAttributeIndices = new HashMap<String, Integer>((int) (numAttributes() / 0.75));
        for (int i = 0; i < numAttributes(); i++) {
            attribute(i).setIndex(i);
            m_NamesToAttributeIndices.put(attribute(i).name(), i);
        }
        m_Instances = new ArrayList<Instance>(capacity);
    }

    /**
     * Create a copy of the structure. If the data has string or relational
     * attributes, theses are replaced by empty copies. Other attributes are left
     * unmodified, but the underlying list structure holding references to the attributes
     * is shallow-copied, so that other Instances objects with a reference to this list are not affected.
     * 
     * @return a copy of the instance structure.
     */
    public Instances stringFreeStructure() {

        ArrayList<Attribute> newAtts = new ArrayList<Attribute>();
        for (Attribute att : m_Attributes) {
            if (att.type() == Attribute.STRING) {
                newAtts.add(new Attribute(att.name(), (List<String>) null, att.index()));
            } else if (att.type() == Attribute.RELATIONAL) {
                newAtts.add(new Attribute(att.name(), new Instances(att.relation(), 0), att.index()));
            }
        }
        if (newAtts.size() == 0) {
            return new Instances(this, 0);
        }
        ArrayList<Attribute> atts = Utils.cast(m_Attributes.clone());
        for (Attribute att : newAtts) {
            atts.set(att.index(), att);
        }
        Instances result = new Instances(this, 0);
        result.m_Attributes = atts;
        return result;
    }

    /**
     * Adds one instance to the end of the set. Shallow copies instance before it
     * is added. Increases the size of the dataset if it is not large enough. Does
     * not check if the instance is compatible with the dataset. Note: String or
     * relational values are not transferred.
     * 
     * @param instance the instance to be added
     */
    @Override
    public boolean add(/* @non_null@ */Instance instance) {

        Instance newInstance = (Instance) instance.copy();

        newInstance.setDataset(this);
        m_Instances.add(newInstance);

        return true;
    }

    /**
     * Adds one instance at the given position in the list. Shallow
     * copies instance before it is added. Increases the size of the
     * dataset if it is not large enough. Does not check if the instance
     * is compatible with the dataset. Note: String or relational values
     * are not transferred.
     * 
     * @param index position where instance is to be inserted
     * @param instance the instance to be added
     */
    // @ requires 0 <= index;
    // @ requires index < m_Instances.size();
    @Override
    public void add(int index, /* @non_null@ */Instance instance) {

        Instance newInstance = (Instance) instance.copy();

        newInstance.setDataset(this);
        m_Instances.add(index, newInstance);
    }

    /**
     * Returns true if all attribute weights are the same and false otherwise. Returns true if there are no attributes.
     * The class attribute (if set) is skipped when this test is performed.
     */
    public boolean allAttributeWeightsIdentical() {

        boolean foundOne = false;
        double weight = 0;
        for (int i = 0; i < numAttributes(); i++) {
            if (i != classIndex()) {
                if (foundOne && (attribute(i).weight() != weight)) {
                    return false;
                } else if (!foundOne) {
                    foundOne = true;
                    weight = attribute(i).weight();
                }
            }
        }
        return true;
    }

    /**
     * Returns true if all instance weights are the same and false otherwise. Returns true if there are no instances.
     */
    public boolean allInstanceWeightsIdentical() {

        if (numInstances() == 0) {
            return true;
        } else {
            double weight = instance(0).weight();
            for (int i = 1; i < numInstances(); i++) {
                if (instance(i).weight() != weight) {
                    return false;
                }
            }
            return true;
        }
    }

    /**
     * Returns an attribute.
     * 
     * @param index the attribute's index (index starts with 0)
     * @return the attribute at the given position
     */
    // @ requires 0 <= index;
    // @ requires index < m_Attributes.size();
    // @ ensures \result != null;
    public/* @pure@ */Attribute attribute(int index) {

        return m_Attributes.get(index);
    }

    /**
     * Returns an attribute given its name. If there is more than one attribute
     * with the same name, it returns the first one. Returns null if the attribute
     * can't be found.
     * 
     * @param name the attribute's name
     * @return the attribute with the given name, null if the attribute can't be
     *         found
     */
    public/* @pure@ */Attribute attribute(String name) {

        Integer index = m_NamesToAttributeIndices.get(name);
        if (index != null) {
            return attribute(index);
        }

        return null;
    }

    /**
     * Checks for attributes of the given type in the dataset
     * 
     * @param attType the attribute type to look for
     * @return true if attributes of the given type are present
     */
    public boolean checkForAttributeType(int attType) {

        int i = 0;

        while (i < m_Attributes.size()) {
            if (attribute(i++).type() == attType) {
                return true;
            }
        }
        return false;
    }

    /**
     * Checks for string attributes in the dataset
     * 
     * @return true if string attributes are present, false otherwise
     */
    public/* @pure@ */boolean checkForStringAttributes() {
        return checkForAttributeType(Attribute.STRING);
    }

    /**
     * Checks if the given instance is compatible with this dataset. Only looks at
     * the size of the instance and the ranges of the values for nominal and
     * string attributes.
     * 
     * @param instance the instance to check
     * @return true if the instance is compatible with the dataset
     */
    public/* @pure@ */boolean checkInstance(Instance instance) {

        if (instance.numAttributes() != numAttributes()) {
            return false;
        }
        for (int i = 0; i < numAttributes(); i++) {
            if (instance.isMissing(i)) {
                continue;
            } else if (attribute(i).isNominal() || attribute(i).isString()) {
                if (instance.value(i) != (int) instance.value(i)) {
                    return false;
                } else if ((instance.value(i) < 0) || (instance.value(i) > attribute(i).numValues() - 1)) {
                    return false;
                }
            }
        }
        return true;
    }

    /**
     * Returns the class attribute.
     * 
     * @return the class attribute
     * @throws UnassignedClassException if the class is not set
     */
    // @ requires classIndex() >= 0;
    public/* @pure@ */Attribute classAttribute() {

        if (m_ClassIndex < 0) {
            throw new UnassignedClassException("Class index is negative (not set)!");
        }
        return attribute(m_ClassIndex);
    }

    /**
     * Returns the class attribute's index. Returns negative number if it's
     * undefined.
     * 
     * @return the class index as an integer
     */
    // ensures \result == m_ClassIndex;
    public/* @pure@ */int classIndex() {

        return m_ClassIndex;
    }

    /**
     * Compactifies the set of instances. Decreases the capacity of the set so
     * that it matches the number of instances in the set.
     */
    public void compactify() {

        m_Instances.trimToSize();
    }

    /**
     * Removes all instances from the set.
     */
    public void delete() {

        m_Instances = new ArrayList<Instance>();
    }

    /**
     * Removes an instance at the given position from the set.
     * 
     * @param index the instance's position (index starts with 0)
     */
    // @ requires 0 <= index && index < numInstances();
    public void delete(int index) {

        m_Instances.remove(index);
    }

    /**
     * Deletes an attribute at the given position (0 to numAttributes()
     * - 1). Attribute objects after the deletion point are copied so
     * that their indices can be decremented. Creates a fresh list to
     * hold the old and new attribute objects. 
     * @param position the attribute's position (position starts with 0)
     * @throws IllegalArgumentException if the given index is out of range or the
     *           class attribute is being deleted
     */
    // @ requires 0 <= position && position < numAttributes();
    // @ requires position != classIndex();
    public void deleteAttributeAt(int position) {

        if ((position < 0) || (position >= m_Attributes.size())) {
            throw new IllegalArgumentException("Index out of range");
        }
        if (position == m_ClassIndex) {
            throw new IllegalArgumentException("Can't delete class attribute");
        }

        ArrayList<Attribute> newList = new ArrayList<Attribute>(m_Attributes.size() - 1);
        HashMap<String, Integer> newMap = new HashMap<String, Integer>((int) ((m_Attributes.size() - 1) / 0.75));
        for (int i = 0; i < position; i++) {
            Attribute att = m_Attributes.get(i);
            newList.add(att);
            newMap.put(att.name(), i);
        }
        for (int i = position + 1; i < m_Attributes.size(); i++) {
            Attribute newAtt = (Attribute) m_Attributes.get(i).copy();
            newAtt.setIndex(i - 1);
            newList.add(newAtt);
            newMap.put(newAtt.name(), i - 1);
        }
        m_Attributes = newList;
        m_NamesToAttributeIndices = newMap;

        if (m_ClassIndex > position) {
            m_ClassIndex--;
        }
        for (int i = 0; i < numInstances(); i++) {
            instance(i).setDataset(null);
            instance(i).deleteAttributeAt(position);
            instance(i).setDataset(this);
        }
    }

    /**
     * Deletes all attributes of the given type in the dataset. A deep copy of the
     * attribute information is performed before an attribute is deleted.
     * 
     * @param attType the attribute type to delete
     * @throws IllegalArgumentException if attribute couldn't be successfully
     *           deleted (probably because it is the class attribute).
     */
    public void deleteAttributeType(int attType) {
        int i = 0;
        while (i < m_Attributes.size()) {
            if (attribute(i).type() == attType) {
                deleteAttributeAt(i);
            } else {
                i++;
            }
        }
    }

    /**
     * Deletes all string attributes in the dataset. A deep copy of the attribute
     * information is performed before an attribute is deleted.
     * 
     * @throws IllegalArgumentException if string attribute couldn't be
     *           successfully deleted (probably because it is the class
     *           attribute).
     * @see #deleteAttributeType(int)
     */
    public void deleteStringAttributes() {
        deleteAttributeType(Attribute.STRING);
    }

    /**
     * Removes all instances with missing values for a particular attribute from
     * the dataset.
     * 
     * @param attIndex the attribute's index (index starts with 0)
     */
    // @ requires 0 <= attIndex && attIndex < numAttributes();
    public void deleteWithMissing(int attIndex) {

        ArrayList<Instance> newInstances = new ArrayList<Instance>(numInstances());

        for (int i = 0; i < numInstances(); i++) {
            if (!instance(i).isMissing(attIndex)) {
                newInstances.add(instance(i));
            }
        }
        m_Instances = newInstances;
    }

    /**
     * Removes all instances with missing values for a particular attribute from
     * the dataset.
     * 
     * @param att the attribute
     */
    public void deleteWithMissing(/* @non_null@ */Attribute att) {

        deleteWithMissing(att.index());
    }

    /**
     * Removes all instances with a missing class value from the dataset.
     * 
     * @throws UnassignedClassException if class is not set
     */
    public void deleteWithMissingClass() {

        if (m_ClassIndex < 0) {
            throw new UnassignedClassException("Class index is negative (not set)!");
        }
        deleteWithMissing(m_ClassIndex);
    }

    /**
     * Returns an enumeration of all the attributes. The class attribute (if set)
     * is skipped by this enumeration.
     * 
     * @return enumeration of all the attributes.
     */
    public/* @non_null pure@ */Enumeration<Attribute> enumerateAttributes() {

        return new WekaEnumeration<Attribute>(m_Attributes, m_ClassIndex);
    }

    /**
     * Returns an enumeration of all instances in the dataset.
     * 
     * @return enumeration of all instances in the dataset
     */
    public/* @non_null pure@ */Enumeration<Instance> enumerateInstances() {

        return new WekaEnumeration<Instance>(m_Instances);
    }

    /**
     * Checks if two headers are equivalent. If not, then returns a message why
     * they differ.
     * 
     * @param dataset another dataset
     * @return null if the header of the given dataset is equivalent to this
     *         header, otherwise a message with details on why they differ
     */
    public String equalHeadersMsg(Instances dataset) {
        // Check class and all attributes
        if (m_ClassIndex != dataset.m_ClassIndex) {
            return "Class index differ: " + (m_ClassIndex + 1) + " != " + (dataset.m_ClassIndex + 1);
        }

        if (m_Attributes.size() != dataset.m_Attributes.size()) {
            return "Different number of attributes: " + m_Attributes.size() + " != " + dataset.m_Attributes.size();
        }

        for (int i = 0; i < m_Attributes.size(); i++) {
            String msg = attribute(i).equalsMsg(dataset.attribute(i));
            if (msg != null) {
                return "Attributes differ at position " + (i + 1) + ":\n" + msg;
            }
        }

        return null;
    }

    /**
     * Checks if two headers are equivalent.
     * 
     * @param dataset another dataset
     * @return true if the header of the given dataset is equivalent to this
     *         header
     */
    public/* @pure@ */boolean equalHeaders(Instances dataset) {
        return (equalHeadersMsg(dataset) == null);
    }

    /**
     * Returns the first instance in the set.
     * 
     * @return the first instance in the set
     */
    // @ requires numInstances() > 0;
    public/* @non_null pure@ */Instance firstInstance() {

        return m_Instances.get(0);
    }

    /**
     * Returns a random number generator. The initial seed of the random number
     * generator depends on the given seed and the hash code of a string
     * representation of a instances chosen based on the given seed.
     * 
     * @param seed the given seed
     * @return the random number generator
     */
    public Random getRandomNumberGenerator(long seed) {

        Random r = new Random(seed);
        r.setSeed(instance(r.nextInt(numInstances())).toStringNoWeight().hashCode() + seed);
        return r;
    }

    /**
     * Inserts an attribute at the given position (0 to numAttributes())
     * and sets all values to be missing. Shallow copies the attribute
     * before it is inserted. Existing attribute objects at and after
     * the insertion point are also copied so that their indices can be
     * incremented. Creates a fresh list to hold the old and new
     * attribute objects.
     * 
     * @param att the attribute to be inserted
     * @param position the attribute's position (position starts with 0)
     * @throws IllegalArgumentException if the given index is out of range
     */
    // @ requires 0 <= position;
    // @ requires position <= numAttributes();
    public void insertAttributeAt(/* @non_null@ */Attribute att, int position) {

        if ((position < 0) || (position > m_Attributes.size())) {
            throw new IllegalArgumentException("Index out of range");
        }
        if (attribute(att.name()) != null) {
            throw new IllegalArgumentException("Attribute name '" + att.name() + "' already in use at position #"
                    + attribute(att.name()).index());
        }
        att = (Attribute) att.copy();
        att.setIndex(position);

        ArrayList<Attribute> newList = new ArrayList<Attribute>(m_Attributes.size() + 1);
        HashMap<String, Integer> newMap = new HashMap<String, Integer>((int) ((m_Attributes.size() + 1) / 0.75));
        for (int i = 0; i < position; i++) {
            Attribute oldAtt = m_Attributes.get(i);
            newList.add(oldAtt);
            newMap.put(oldAtt.name(), i);
        }
        newList.add(att);
        newMap.put(att.name(), position);
        for (int i = position; i < m_Attributes.size(); i++) {
            Attribute newAtt = (Attribute) m_Attributes.get(i).copy();
            newAtt.setIndex(i + 1);
            newList.add(newAtt);
            newMap.put(newAtt.name(), i + 1);
        }
        m_Attributes = newList;
        m_NamesToAttributeIndices = newMap;

        for (int i = 0; i < numInstances(); i++) {
            instance(i).setDataset(null);
            instance(i).insertAttributeAt(position);
            instance(i).setDataset(this);
        }
        if (m_ClassIndex >= position) {
            m_ClassIndex++;
        }
    }

    /**
     * Returns the instance at the given position.
     * 
     * @param index the instance's index (index starts with 0)
     * @return the instance at the given position
     */
    // @ requires 0 <= index;
    // @ requires index < numInstances();
    public/* @non_null pure@ */Instance instance(int index) {

        return m_Instances.get(index);
    }

    /**
     * Returns the instance at the given position.
     * 
     * @param index the instance's index (index starts with 0)
     * @return the instance at the given position
     */
    // @ requires 0 <= index;
    // @ requires index < numInstances();
    @Override
    public/* @non_null pure@ */Instance get(int index) {

        return m_Instances.get(index);
    }

    /**
     * Returns the kth-smallest attribute value of a numeric attribute.
     * 
     * @param att the Attribute object
     * @param k the value of k
     * @return the kth-smallest value
     */
    public double kthSmallestValue(Attribute att, int k) {

        return kthSmallestValue(att.index(), k);
    }

    /**
     * Returns the kth-smallest attribute value of a numeric attribute. NOTE
     * CHANGE: Missing values (NaN values) are now treated as Double.MAX_VALUE.
     * Also, the order of the instances in the data is no longer affected.
     * 
     * @param attIndex the attribute's index
     * @param k the value of k
     * @return the kth-smallest value
     */
    public double kthSmallestValue(int attIndex, int k) {

        if (!attribute(attIndex).isNumeric()) {
            throw new IllegalArgumentException(
                    "Instances: attribute must be numeric to compute kth-smallest value.");
        }

        if ((k < 1) || (k > numInstances())) {
            throw new IllegalArgumentException(
                    "Instances: value for k for computing kth-smallest value too large.");
        }

        double[] vals = new double[numInstances()];
        for (int i = 0; i < vals.length; i++) {
            double val = instance(i).value(attIndex);
            if (Utils.isMissingValue(val)) {
                vals[i] = Double.MAX_VALUE;
            } else {
                vals[i] = val;
            }
        }
        return Utils.kthSmallestValue(vals, k);
    }

    /**
     * Returns the last instance in the set.
     * 
     * @return the last instance in the set
     */
    // @ requires numInstances() > 0;
    public/* @non_null pure@ */Instance lastInstance() {

        return m_Instances.get(m_Instances.size() - 1);
    }

    /**
     * Returns the mean (mode) for a numeric (nominal) attribute as a
     * floating-point value. Returns 0 if the attribute is neither nominal nor
     * numeric. If all values are missing it returns zero.
     * 
     * @param attIndex the attribute's index (index starts with 0)
     * @return the mean or the mode
     */
    public/* @pure@ */double meanOrMode(int attIndex) {

        double result, found;
        int[] counts;

        if (attribute(attIndex).isNumeric()) {
            result = found = 0;
            for (int j = 0; j < numInstances(); j++) {
                if (!instance(j).isMissing(attIndex)) {
                    found += instance(j).weight();
                    result += instance(j).weight() * instance(j).value(attIndex);
                }
            }
            if (found <= 0) {
                return 0;
            } else {
                return result / found;
            }
        } else if (attribute(attIndex).isNominal()) {
            counts = new int[attribute(attIndex).numValues()];
            for (int j = 0; j < numInstances(); j++) {
                if (!instance(j).isMissing(attIndex)) {
                    counts[(int) instance(j).value(attIndex)] += instance(j).weight();
                }
            }
            return Utils.maxIndex(counts);
        } else {
            return 0;
        }
    }

    /**
     * Returns the mean (mode) for a numeric (nominal) attribute as a
     * floating-point value. Returns 0 if the attribute is neither nominal nor
     * numeric. If all values are missing it returns zero.
     * 
     * @param att the attribute
     * @return the mean or the mode
     */
    public/* @pure@ */double meanOrMode(Attribute att) {

        return meanOrMode(att.index());
    }

    /**
     * Returns the number of attributes.
     * 
     * @return the number of attributes as an integer
     */
    // @ ensures \result == m_Attributes.size();
    public/* @pure@ */int numAttributes() {

        return m_Attributes.size();
    }

    /**
     * Returns the number of class labels.
     * 
     * @return the number of class labels as an integer if the class attribute is
     *         nominal, 1 otherwise.
     * @throws UnassignedClassException if the class is not set
     */
    // @ requires classIndex() >= 0;
    public/* @pure@ */int numClasses() {

        if (m_ClassIndex < 0) {
            throw new UnassignedClassException("Class index is negative (not set)!");
        }
        if (!classAttribute().isNominal()) {
            return 1;
        } else {
            return classAttribute().numValues();
        }
    }

    /**
     * Returns the number of distinct values of a given attribute. The value
     * 'missing' is not counted.
     * 
     * @param attIndex the attribute (index starts with 0)
     * @return the number of distinct values of a given attribute
     */
    // @ requires 0 <= attIndex;
    // @ requires attIndex < numAttributes();
    public/* @pure@ */int numDistinctValues(int attIndex) {

        HashSet<Double> set = new HashSet<Double>(2 * numInstances());
        for (Instance current : this) {
            double key = current.value(attIndex);
            if (!Utils.isMissingValue(key)) {
                set.add(key);
            }
        }
        return set.size();
    }

    /**
     * Returns the number of distinct values of a given attribute. The value
     * 'missing' is not counted.
     * 
     * @param att the attribute
     * @return the number of distinct values of a given attribute
     */
    public/* @pure@ */int numDistinctValues(/* @non_null@ */Attribute att) {

        return numDistinctValues(att.index());
    }

    /**
     * Returns the number of instances in the dataset.
     * 
     * @return the number of instances in the dataset as an integer
     */
    // @ ensures \result == m_Instances.size();
    public/* @pure@ */int numInstances() {

        return m_Instances.size();
    }

    /**
     * Returns the number of instances in the dataset.
     * 
     * @return the number of instances in the dataset as an integer
     */
    // @ ensures \result == m_Instances.size();
    @Override
    public/* @pure@ */int size() {

        return m_Instances.size();
    }

    /**
     * Shuffles the instances in the set so that they are ordered randomly.
     * 
     * @param random a random number generator
     */
    public void randomize(Random random) {

        for (int j = numInstances() - 1; j > 0; j--) {
            swap(j, random.nextInt(j + 1));
        }
    }

    /**
     * Reads a single instance from the reader and appends it to the dataset.
     * Automatically expands the dataset if it is not large enough to hold the
     * instance. This method does not check for carriage return at the end of the
     * line.
     * 
     * @param reader the reader
     * @return false if end of file has been reached
     * @throws IOException if the information is not read successfully
     * @deprecated instead of using this method in conjunction with the
     *             <code>readInstance(Reader)</code> method, one should use the
     *             <code>ArffLoader</code> or <code>DataSource</code> class
     *             instead.
     * @see weka.core.converters.ArffLoader
     * @see weka.core.converters.ConverterUtils.DataSource
     */
    @Deprecated
    public boolean readInstance(Reader reader) throws IOException {

        ArffReader arff = new ArffReader(reader, this, m_Lines, 1);
        Instance inst = arff.readInstance(arff.getData(), false);
        m_Lines = arff.getLineNo();
        if (inst != null) {
            add(inst);
            return true;
        } else {
            return false;
        }
    }

    /**
     * Replaces the attribute at the given position (0 to
     * numAttributes()) with the given attribute and sets all its values to
     * be missing. Shallow copies the given attribute before it is
     * inserted. Creates a fresh list to hold the old and new
     * attribute objects.
     * 
     * @param att the attribute to be inserted
     * @param position the attribute's position (position starts with 0)
     * @throws IllegalArgumentException if the given index is out of range
     */
    // @ requires 0 <= position;
    // @ requires position <= numAttributes();
    public void replaceAttributeAt(/* @non_null@ */Attribute att, int position) {

        if ((position < 0) || (position > m_Attributes.size())) {
            throw new IllegalArgumentException("Index out of range");
        }

        // Does the new attribute have a different name?
        if (!att.name().equals(m_Attributes.get(position).name())) {

            // Need to check if attribute name already exists
            Attribute candidate = attribute(att.name());
            if ((candidate != null) && (position != candidate.index())) {
                throw new IllegalArgumentException("Attribute name '" + att.name()
                        + "' already in use at position #" + attribute(att.name()).index());
            }
        }
        att = (Attribute) att.copy();
        att.setIndex(position);

        ArrayList<Attribute> newList = new ArrayList<Attribute>(m_Attributes.size());
        HashMap<String, Integer> newMap = new HashMap<String, Integer>((int) ((m_Attributes.size() + 1) / 0.75));
        for (int i = 0; i < position; i++) {
            Attribute oldAtt = m_Attributes.get(i);
            newList.add(oldAtt);
            newMap.put(oldAtt.name(), i);
        }
        newList.add(att);
        newMap.put(att.name(), position);
        for (int i = position + 1; i < m_Attributes.size(); i++) {
            Attribute newAtt = (Attribute) m_Attributes.get(i);
            newList.add(newAtt);
            newMap.put(newAtt.name(), i);
        }
        m_Attributes = newList;
        m_NamesToAttributeIndices = newMap;

        for (int i = 0; i < numInstances(); i++) {
            instance(i).setDataset(null);
            instance(i).setMissing(position);
            instance(i).setDataset(this);
        }
    }

    /**
     * Returns the relation's name.
     * 
     * @return the relation's name as a string
     */
    // @ ensures \result == m_RelationName;
    public/* @pure@ */String relationName() {

        return m_RelationName;
    }

    /**
     * Removes the instance at the given position.
     * 
     * @param index the instance's index (index starts with 0)
     * @return the instance at the given position
     */
    // @ requires 0 <= index;
    // @ requires index < numInstances();
    @Override
    public Instance remove(int index) {

        return m_Instances.remove(index);
    }

    /**
     * Renames an attribute. This change only affects this dataset.
     * 
     * @param att the attribute's index (index starts with 0)
     * @param name the new name
     */
    public void renameAttribute(int att, String name) {

        Attribute existingAtt = attribute(name);
        if (existingAtt != null) {
            if (att == existingAtt.index()) {
                return; // Old name is equal to new name
            } else {
                throw new IllegalArgumentException(
                        "Attribute name '" + name + "' already present at position #" + existingAtt.index());
            }
        }

        Attribute newAtt = attribute(att).copy(name);
        ArrayList<Attribute> newVec = new ArrayList<Attribute>(numAttributes());
        HashMap<String, Integer> newMap = new HashMap<String, Integer>((int) (numAttributes() / 0.75));
        for (Attribute attr : m_Attributes) {
            if (attr.index() == att) {
                newVec.add(newAtt);
                newMap.put(name, att);
            } else {
                newVec.add(attr);
                newMap.put(attr.name(), attr.index());
            }
        }
        m_Attributes = newVec;
        m_NamesToAttributeIndices = newMap;
    }

    /**
     * Sets the weight of an attribute. This change only affects this dataset.
     * 
     * @param att the attribute
     * @param weight the new weight
     */
    public void setAttributeWeight(Attribute att, double weight) {

        setAttributeWeight(att.index(), weight);
    }

    /**
     * Sets the weight of an attribute. This change only affects this dataset.
     *
     * @param att the attribute's index (index starts with 0)
     * @param weight the new weight
     */
    public void setAttributeWeight(int att, double weight) {

        Attribute existingAtt = attribute(att);
        if (existingAtt.weight() == weight) {
            return;
        }

        Attribute newAtt = (Attribute) existingAtt.copy();
        newAtt.setWeight(weight);
        ArrayList<Attribute> newVec = new ArrayList<Attribute>(numAttributes());
        HashMap<String, Integer> newMap = new HashMap<String, Integer>((int) (numAttributes() / 0.75));
        for (Attribute attr : m_Attributes) {
            if (attr.index() == att) {
                newVec.add(newAtt);
                newMap.put(newAtt.name(), att);
            } else {
                newVec.add(attr);
                newMap.put(attr.name(), attr.index());
            }
        }
        m_Attributes = newVec;
        m_NamesToAttributeIndices = newMap;
    }

    /**
     * Renames an attribute. This change only affects this dataset.
     *
     * @param att the attribute
     * @param name the new name
     */
    public void renameAttribute(Attribute att, String name) {

        renameAttribute(att.index(), name);
    }

    /**
     * Renames the value of a nominal (or string) attribute value. This change
     * only affects this dataset.
     * 
     * @param att the attribute's index (index starts with 0)
     * @param val the value's index (index starts with 0)
     * @param name the new name
     */
    public void renameAttributeValue(int att, int val, String name) {

        Attribute newAtt = (Attribute) attribute(att).copy();
        ArrayList<Attribute> newVec = new ArrayList<Attribute>(numAttributes());

        newAtt.setValue(val, name);
        for (Attribute attr : m_Attributes) {
            if (attr.index() == att) {
                newVec.add(newAtt);
            } else {
                newVec.add(attr);
            }
        }
        m_Attributes = newVec;
    }

    /**
     * Renames the value of a nominal (or string) attribute value. This change
     * only affects this dataset.
     * 
     * @param att the attribute
     * @param val the value
     * @param name the new name
     */
    public void renameAttributeValue(Attribute att, String val, String name) {

        int v = att.indexOfValue(val);
        if (v == -1) {
            throw new IllegalArgumentException(val + " not found");
        }
        renameAttributeValue(att.index(), v, name);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement.
     * 
     * @param random a random number generator
     * @return the new dataset
     */
    public Instances resample(Random random) {

        Instances newData = new Instances(this, numInstances());
        while (newData.numInstances() < numInstances()) {
            newData.add(instance(random.nextInt(numInstances())));
        }
        return newData;
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the current instance weights. The weights of the
     * instances in the new dataset are set to one. See also
     * resampleWithWeights(Random, double[], boolean[]).
     * 
     * @param random a random number generator
     * @return the new dataset
     */
    public Instances resampleWithWeights(Random random) {

        return resampleWithWeights(random, false);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the current instance weights. The weights of the
     * instances in the new dataset are set to one. See also
     * resampleWithWeights(Random, double[], boolean[]).
     * 
     * @param random a random number generator
     * @param sampled an array indicating what has been sampled
     * @return the new dataset
     */
    public Instances resampleWithWeights(Random random, boolean[] sampled) {

        return resampleWithWeights(random, sampled, false);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the current instance weights. See also
     * resampleWithWeights(Random, double[], boolean[]).
     * 
     * @param random a random number generator
     * @param representUsingWeights if true, copies are represented using weights
     *          in resampled data
     * @return the new dataset
     */
    public Instances resampleWithWeights(Random random, boolean representUsingWeights) {

        return resampleWithWeights(random, null, representUsingWeights);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the current instance weights. See also
     * resampleWithWeights(Random, double[], boolean[]).
     * 
     * @param random a random number generator
     * @param sampled an array indicating what has been sampled
     * @param representUsingWeights if true, copies are represented using weights
     *          in resampled data
     * @return the new dataset
     */
    public Instances resampleWithWeights(Random random, boolean[] sampled, boolean representUsingWeights) {

        return resampleWithWeights(random, sampled, representUsingWeights, 100.0);
    }

    /**
     * Creates a new dataset from this dataset using random sampling with
     * replacement according to current instance weights. The size of the sample
     * can be specified as a percentage of this dataset. See also
     * resampleWithWeights(Random, double[], boolean[]).
     *
     * @param random a random number generator
     * @param sampled an array indicating what has been sampled, can be null
     * @param representUsingWeights if true, copies are represented using weights
     *          in resampled data
     * @param sampleSize size of the new dataset as a percentage of the size of this
     *                   dataset
     * @return the new dataset
     * @throws IllegalArgumentException if the weights array is of the wrong
     *           length or contains negative weights.
     */
    public Instances resampleWithWeights(Random random, boolean[] sampled, boolean representUsingWeights,
            double sampleSize) {

        double[] weights = new double[numInstances()];
        for (int i = 0; i < weights.length; i++) {
            weights[i] = instance(i).weight();
        }
        return resampleWithWeights(random, weights, sampled, representUsingWeights, sampleSize);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the given weight vector. The weights of the
     * instances in the new dataset are set to one. The length of the weight
     * vector has to be the same as the number of instances in the dataset, and
     * all weights have to be positive. See also
     * resampleWithWeights(Random, double[], boolean[]).
     * 
     * @param random a random number generator
     * @param weights the weight vector
     * @return the new dataset
     * @throws IllegalArgumentException if the weights array is of the wrong
     *           length or contains negative weights.
     */
    public Instances resampleWithWeights(Random random, double[] weights) {

        return resampleWithWeights(random, weights, null);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the given weight vector. The weights of the
     * instances in the new dataset are set to one. The length of the weight
     * vector has to be the same as the number of instances in the dataset, and
     * all weights have to be positive. Uses Walker's method, see pp. 232 of
     * "Stochastic Simulation" by B.D. Ripley (1987).
     * 
     * @param random a random number generator
     * @param weights the weight vector
     * @param sampled an array indicating what has been sampled, can be null
     * @return the new dataset
     * @throws IllegalArgumentException if the weights array is of the wrong
     *           length or contains negative weights.
     */
    public Instances resampleWithWeights(Random random, double[] weights, boolean[] sampled) {

        return resampleWithWeights(random, weights, sampled, false);
    }

    /**
     * Creates a new dataset of the same size as this dataset using random sampling with
     * replacement according to the given weight vector. The length of the weight
     * vector has to be the same as the number of instances in the dataset, and
     * all weights have to be positive. Uses Walker's method, see pp. 232 of
     * "Stochastic Simulation" by B.D. Ripley (1987).
     *
     * @param random a random number generator
     * @param weights the weight vector
     * @param sampled an array indicating what has been sampled, can be null
     * @param representUsingWeights if true, copies are represented using weights
     *          in resampled data
     * @return the new dataset
     * @throws IllegalArgumentException if the weights array is of the wrong
     *           length or contains negative weights.
     */
    public Instances resampleWithWeights(Random random, double[] weights, boolean[] sampled,
            boolean representUsingWeights) {

        return resampleWithWeights(random, weights, sampled, representUsingWeights, 100.0);
    }

    /**
     * Creates a new dataset from this dataset using random sampling with
     * replacement according to the given weight vector. The length of the weight
     * vector has to be the same as the number of instances in the dataset, and
     * all weights have to be positive. Uses Walker's method, see pp. 232 of
     * "Stochastic Simulation" by B.D. Ripley (1987). The size of the sample
     * can be specified as a percentage of this dataset.
     * 
     * @param random a random number generator
     * @param weights the weight vector
     * @param sampled an array indicating what has been sampled, can be null
     * @param representUsingWeights if true, copies are represented using weights
     *          in resampled data
     * @param sampleSize size of the new dataset as a percentage of the size of this
     *                   dataset
     * @return the new dataset
     * @throws IllegalArgumentException if the weights array is of the wrong
     *           length or contains negative weights.
     */
    public Instances resampleWithWeights(Random random, double[] weights, boolean[] sampled,
            boolean representUsingWeights, double sampleSize) {

        if (weights.length != numInstances()) {
            throw new IllegalArgumentException("weights.length != numInstances.");
        }

        if ((sampleSize < 0) || (sampleSize > 100)) {
            throw new IllegalArgumentException("Sample size must be a percentage.");
        }

        Instances newData = new Instances(this, numInstances());
        if (numInstances() == 0) {
            return newData;
        }

        // Walker's method, see pp. 232 of "Stochastic Simulation" by B.D. Ripley
        double[] P = new double[weights.length];
        System.arraycopy(weights, 0, P, 0, weights.length);
        Utils.normalize(P);
        double[] Q = new double[weights.length];
        int[] A = new int[weights.length];
        int[] W = new int[weights.length];
        int M = weights.length;
        int NN = -1;
        int NP = M;
        for (int I = 0; I < M; I++) {
            if (P[I] < 0) {
                throw new IllegalArgumentException("Weights have to be positive.");
            }
            Q[I] = M * P[I];
            if (Q[I] < 1.0) {
                W[++NN] = I;
            } else {
                W[--NP] = I;
            }
        }
        if (NN > -1 && NP < M) {
            for (int S = 0; S < M - 1; S++) {
                int I = W[S];
                int J = W[NP];
                A[I] = J;
                Q[J] += Q[I] - 1.0;
                if (Q[J] < 1.0) {
                    NP++;
                }
                if (NP >= M) {
                    break;
                }
            }
            // A[W[M]] = W[M];
        }

        for (int I = 0; I < M; I++) {
            Q[I] += I;
        }

        // Do we need to keep track of how many copies to use?
        int[] counts = null;
        if (representUsingWeights) {
            counts = new int[M];
        }

        int numToBeSampled = (int) (numInstances() * (sampleSize / 100.0));

        for (int i = 0; i < numToBeSampled; i++) {
            int ALRV;
            double U = M * random.nextDouble();
            int I = (int) U;
            if (U < Q[I]) {
                ALRV = I;
            } else {
                ALRV = A[I];
            }
            if (representUsingWeights) {
                counts[ALRV]++;
            } else {
                newData.add(instance(ALRV));
            }
            if (sampled != null) {
                sampled[ALRV] = true;
            }
            if (!representUsingWeights) {
                newData.instance(newData.numInstances() - 1).setWeight(1);
            }
        }

        // Add data based on counts if weights should represent numbers of copies.
        if (representUsingWeights) {
            for (int i = 0; i < counts.length; i++) {
                if (counts[i] > 0) {
                    newData.add(instance(i));
                    newData.instance(newData.numInstances() - 1).setWeight(counts[i]);
                }
            }
        }

        return newData;
    }

    /**
     * Replaces the instance at the given position. Shallow copies instance before
     * it is added. Does not check if the instance is compatible with the dataset.
     * Note: String or relational values are not transferred.
     * 
     * @param index position where instance is to be inserted
     * @param instance the instance to be inserted
     * @return the instance previously at that position
     */
    // @ requires 0 <= index;
    // @ requires index < m_Instances.size();
    @Override
    public Instance set(int index, /* @non_null@ */Instance instance) {

        Instance newInstance = (Instance) instance.copy();
        Instance oldInstance = m_Instances.get(index);

        newInstance.setDataset(this);
        m_Instances.set(index, newInstance);

        return oldInstance;
    }

    /**
     * Sets the class attribute.
     * 
     * @param att attribute to be the class
     */
    public void setClass(Attribute att) {

        m_ClassIndex = att.index();
    }

    /**
     * Sets the class index of the set. If the class index is negative there is
     * assumed to be no class. (ie. it is undefined)
     * 
     * @param classIndex the new class index (index starts with 0)
     * @throws IllegalArgumentException if the class index is too big or < 0
     */
    public void setClassIndex(int classIndex) {

        if (classIndex >= numAttributes()) {
            throw new IllegalArgumentException("Invalid class index: " + classIndex);
        }
        m_ClassIndex = classIndex;
    }

    /**
     * Sets the relation's name.
     * 
     * @param newName the new relation name.
     */
    public void setRelationName(/* @non_null@ */String newName) {

        m_RelationName = newName;
    }

    /**
     * Sorts a nominal attribute (stable, linear-time sort). Instances
     * are sorted based on the attribute label ordering specified in the header.  
     * 
     * @param attIndex the attribute's index (index starts with 0)
     */
    protected void sortBasedOnNominalAttribute(int attIndex) {

        // Figure out number of instances for each attribute value
        // and store original list of instances away
        int[] counts = new int[attribute(attIndex).numValues()];
        Instance[] backup = new Instance[numInstances()];
        int j = 0;
        for (Instance inst : this) {
            backup[j++] = inst;
            if (!inst.isMissing(attIndex)) {
                counts[(int) inst.value(attIndex)]++;
            }
        }

        // Indices to figure out where to add instances
        int[] indices = new int[counts.length];
        int start = 0;
        for (int i = 0; i < counts.length; i++) {
            indices[i] = start;
            start += counts[i];
        }
        for (Instance inst : backup) { // Use backup here
            if (!inst.isMissing(attIndex)) {
                m_Instances.set(indices[(int) inst.value(attIndex)]++, inst);
            } else {
                m_Instances.set(start++, inst);
            }
        }
    }

    /**
     * Sorts the instances based on an attribute. For numeric attributes,
     * instances are sorted in ascending order. For nominal attributes, instances
     * are sorted based on the attribute label ordering specified in the header.
     * Instances with missing values for the attribute are placed at the end of
     * the dataset.
     * 
     * @param attIndex the attribute's index (index starts with 0)
     */
    public void sort(int attIndex) {

        if (!attribute(attIndex).isNominal()) {

            // Use quicksort from Utils class for sorting
            double[] vals = new double[numInstances()];
            Instance[] backup = new Instance[vals.length];
            for (int i = 0; i < vals.length; i++) {
                Instance inst = instance(i);
                backup[i] = inst;
                double val = inst.value(attIndex);
                if (Utils.isMissingValue(val)) {
                    vals[i] = Double.MAX_VALUE;
                } else {
                    vals[i] = val;
                }
            }

            int[] sortOrder = Utils.sortWithNoMissingValues(vals);
            for (int i = 0; i < vals.length; i++) {
                m_Instances.set(i, backup[sortOrder[i]]);
            }
        } else {
            sortBasedOnNominalAttribute(attIndex);
        }
    }

    /**
     * Sorts the instances based on an attribute. For numeric attributes,
     * instances are sorted into ascending order. For nominal attributes,
     * instances are sorted based on the attribute label ordering specified in the
     * header. Instances with missing values for the attribute are placed at the
     * end of the dataset.
     * 
     * @param att the attribute
     */
    public void sort(Attribute att) {

        sort(att.index());
    }

    /**
     * Sorts the instances based on an attribute, using a stable sort. For numeric attributes,
     * instances are sorted in ascending order. For nominal attributes, instances
     * are sorted based on the attribute label ordering specified in the header.
     * Instances with missing values for the attribute are placed at the end of
     * the dataset.
     * 
     * @param attIndex the attribute's index (index starts with 0)
     */
    public void stableSort(int attIndex) {

        if (!attribute(attIndex).isNominal()) {

            // Use quicksort from Utils class for sorting
            double[] vals = new double[numInstances()];
            Instance[] backup = new Instance[vals.length];
            for (int i = 0; i < vals.length; i++) {
                Instance inst = instance(i);
                backup[i] = inst;
                vals[i] = inst.value(attIndex);
            }

            int[] sortOrder = Utils.stableSort(vals);
            for (int i = 0; i < vals.length; i++) {
                m_Instances.set(i, backup[sortOrder[i]]);
            }
        } else {
            sortBasedOnNominalAttribute(attIndex);
        }
    }

    /**
     * Sorts the instances based on an attribute, using a stable sort. For numeric attributes,
     * instances are sorted into ascending order. For nominal attributes,
     * instances are sorted based on the attribute label ordering specified in the
     * header. Instances with missing values for the attribute are placed at the
     * end of the dataset.
     * 
     * @param att the attribute
     */
    public void stableSort(Attribute att) {

        stableSort(att.index());
    }

    /**
     * Stratifies a set of instances according to its class values if the class
     * attribute is nominal (so that afterwards a stratified cross-validation can
     * be performed).
     * 
     * @param numFolds the number of folds in the cross-validation
     * @throws UnassignedClassException if the class is not set
     */
    public void stratify(int numFolds) {

        if (numFolds <= 1) {
            throw new IllegalArgumentException("Number of folds must be greater than 1");
        }
        if (m_ClassIndex < 0) {
            throw new UnassignedClassException("Class index is negative (not set)!");
        }
        if (classAttribute().isNominal()) {

            // sort by class
            int index = 1;
            while (index < numInstances()) {
                Instance instance1 = instance(index - 1);
                for (int j = index; j < numInstances(); j++) {
                    Instance instance2 = instance(j);
                    if ((instance1.classValue() == instance2.classValue())
                            || (instance1.classIsMissing() && instance2.classIsMissing())) {
                        swap(index, j);
                        index++;
                    }
                }
                index++;
            }
            stratStep(numFolds);
        }
    }

    /**
     * Computes the sum of all the instances' weights.
     * 
     * @return the sum of all the instances' weights as a double
     */
    public/* @pure@ */double sumOfWeights() {

        double sum = 0;

        for (int i = 0; i < numInstances(); i++) {
            sum += instance(i).weight();
        }
        return sum;
    }

    /**
     * Creates the test set for one fold of a cross-validation on the dataset.
     * 
     * @param numFolds the number of folds in the cross-validation. Must be
     *          greater than 1.
     * @param numFold 0 for the first fold, 1 for the second, ...
     * @return the test set as a set of weighted instances
     * @throws IllegalArgumentException if the number of folds is less than 2 or
     *           greater than the number of instances.
     */
    // @ requires 2 <= numFolds && numFolds < numInstances();
    // @ requires 0 <= numFold && numFold < numFolds;
    public Instances testCV(int numFolds, int numFold) {

        int numInstForFold, first, offset;
        Instances test;

        if (numFolds < 2) {
            throw new IllegalArgumentException("Number of folds must be at least 2!");
        }
        if (numFolds > numInstances()) {
            throw new IllegalArgumentException("Can't have more folds than instances!");
        }
        numInstForFold = numInstances() / numFolds;
        if (numFold < numInstances() % numFolds) {
            numInstForFold++;
            offset = numFold;
        } else {
            offset = numInstances() % numFolds;
        }
        test = new Instances(this, numInstForFold);
        first = numFold * (numInstances() / numFolds) + offset;
        copyInstances(first, test, numInstForFold);
        return test;
    }

    /**
     * Returns the dataset as a string in ARFF format. Strings are quoted if they
     * contain whitespace characters, or if they are a question mark.
     * 
     * @return the dataset in ARFF format as a string
     */
    @Override
    public String toString() {

        StringBuffer text = new StringBuffer();

        text.append(ARFF_RELATION).append(" ").append(Utils.quote(m_RelationName)).append("\n\n");
        for (int i = 0; i < numAttributes(); i++) {
            text.append(attribute(i)).append("\n");
        }
        text.append("\n").append(ARFF_DATA).append("\n");

        text.append(stringWithoutHeader());
        return text.toString();
    }

    /**
     * Returns the instances in the dataset as a string in ARFF format. Strings
     * are quoted if they contain whitespace characters, or if they are a question
     * mark.
     * 
     * @return the dataset in ARFF format as a string
     */
    protected String stringWithoutHeader() {

        StringBuffer text = new StringBuffer();

        for (int i = 0; i < numInstances(); i++) {
            text.append(instance(i));
            if (i < numInstances() - 1) {
                text.append('\n');
            }
        }
        return text.toString();
    }

    /**
     * Creates the training set for one fold of a cross-validation on the dataset.
     * 
     * @param numFolds the number of folds in the cross-validation. Must be
     *          greater than 1.
     * @param numFold 0 for the first fold, 1 for the second, ...
     * @return the training set
     * @throws IllegalArgumentException if the number of folds is less than 2 or
     *           greater than the number of instances.
     */
    // @ requires 2 <= numFolds && numFolds < numInstances();
    // @ requires 0 <= numFold && numFold < numFolds;
    public Instances trainCV(int numFolds, int numFold) {

        int numInstForFold, first, offset;
        Instances train;

        if (numFolds < 2) {
            throw new IllegalArgumentException("Number of folds must be at least 2!");
        }
        if (numFolds > numInstances()) {
            throw new IllegalArgumentException("Can't have more folds than instances!");
        }
        numInstForFold = numInstances() / numFolds;
        if (numFold < numInstances() % numFolds) {
            numInstForFold++;
            offset = numFold;
        } else {
            offset = numInstances() % numFolds;
        }
        train = new Instances(this, numInstances() - numInstForFold);
        first = numFold * (numInstances() / numFolds) + offset;
        copyInstances(0, train, first);
        copyInstances(first + numInstForFold, train, numInstances() - first - numInstForFold);

        return train;
    }

    /**
     * Creates the training set for one fold of a cross-validation on the dataset.
     * The data is subsequently randomized based on the given random number
     * generator.
     * 
     * @param numFolds the number of folds in the cross-validation. Must be
     *          greater than 1.
     * @param numFold 0 for the first fold, 1 for the second, ...
     * @param random the random number generator
     * @return the training set
     * @throws IllegalArgumentException if the number of folds is less than 2 or
     *           greater than the number of instances.
     */
    // @ requires 2 <= numFolds && numFolds < numInstances();
    // @ requires 0 <= numFold && numFold < numFolds;
    public Instances trainCV(int numFolds, int numFold, Random random) {

        Instances train = trainCV(numFolds, numFold);
        train.randomize(random);
        return train;
    }

    /**
     * Computes the variance for all numeric attributes simultaneously.
     * This is faster than calling variance() for each attribute.
     * The resulting array has as many dimensions as there are attributes.
     * Array elements corresponding to non-numeric attributes are set to 0.
     * 
     * @return the array containing the variance values
     */
    public/* @pure@ */double[] variances() {

        double[] vars = new double[numAttributes()];

        for (int i = 0; i < numAttributes(); i++)
            vars[i] = Double.NaN;

        double[] means = new double[numAttributes()];
        double[] sumWeights = new double[numAttributes()];

        for (int i = 0; i < numInstances(); i++) {
            double weight = instance(i).weight();
            for (int attIndex = 0; attIndex < numAttributes(); attIndex++) {
                if (attribute(attIndex).isNumeric()) {
                    if (!instance(i).isMissing(attIndex)) {
                        double value = instance(i).value(attIndex);

                        if (Double.isNaN(vars[attIndex])) {
                            // For the first value the mean can suffer from loss of precision
                            // so we treat it separately and make sure the calculation stays accurate
                            means[attIndex] = value;
                            sumWeights[attIndex] = weight;
                            vars[attIndex] = 0;
                            continue;
                        }

                        double delta = weight * (value - means[attIndex]);
                        sumWeights[attIndex] += weight;
                        means[attIndex] += delta / sumWeights[attIndex];
                        vars[attIndex] += delta * (value - means[attIndex]);
                    }
                }
            }
        }

        for (int attIndex = 0; attIndex < numAttributes(); attIndex++) {
            if (attribute(attIndex).isNumeric()) {
                if (sumWeights[attIndex] <= 1) {
                    vars[attIndex] = Double.NaN;
                } else {
                    vars[attIndex] /= sumWeights[attIndex] - 1;
                    if (vars[attIndex] < 0)
                        vars[attIndex] = 0;
                }
            }
        }

        return vars;
    }

    /**
     * Computes the variance for a numeric attribute.
     * 
     * @param attIndex the numeric attribute (index starts with 0)
     * @return the variance if the attribute is numeric
     * @throws IllegalArgumentException if the attribute is not numeric
     */
    public/* @pure@ */double variance(int attIndex) {

        if (!attribute(attIndex).isNumeric()) {
            throw new IllegalArgumentException("Can't compute variance because attribute is " + "not numeric!");
        }

        double mean = 0;
        double var = Double.NaN;
        double sumWeights = 0;
        for (int i = 0; i < numInstances(); i++) {
            if (!instance(i).isMissing(attIndex)) {
                double weight = instance(i).weight();
                double value = instance(i).value(attIndex);

                if (Double.isNaN(var)) {
                    // For the first value the mean can suffer from loss of precision
                    // so we treat it separately and make sure the calculation stays accurate
                    mean = value;
                    sumWeights = weight;
                    var = 0;
                    continue;
                }

                double delta = weight * (value - mean);
                sumWeights += weight;
                mean += delta / sumWeights;
                var += delta * (value - mean);
            }
        }

        if (sumWeights <= 1) {
            return Double.NaN;
        }

        var /= sumWeights - 1;

        // We don't like negative variance
        if (var < 0) {
            return 0;
        } else {
            return var;
        }
    }

    /**
     * Computes the variance for a numeric attribute.
     * 
     * @param att the numeric attribute
     * @return the variance if the attribute is numeric
     * @throws IllegalArgumentException if the attribute is not numeric
     */
    public/* @pure@ */double variance(Attribute att) {

        return variance(att.index());
    }

    /**
     * Calculates summary statistics on the values that appear in this set of
     * instances for a specified attribute.
     * 
     * @param index the index of the attribute to summarize (index starts with 0)
     * @return an AttributeStats object with it's fields calculated.
     */
    // @ requires 0 <= index && index < numAttributes();
    public AttributeStats attributeStats(int index) {

        AttributeStats result = new AttributeStats();
        if (attribute(index).isNominal()) {
            result.nominalCounts = new int[attribute(index).numValues()];
            result.nominalWeights = new double[attribute(index).numValues()];
        }
        if (attribute(index).isNumeric()) {
            result.numericStats = new weka.experiment.Stats();
        }
        result.totalCount = numInstances();

        HashMap<Double, double[]> map = new HashMap<Double, double[]>(2 * result.totalCount);
        for (Instance current : this) {
            double key = current.value(index);
            if (Utils.isMissingValue(key)) {
                result.missingCount++;
            } else {
                double[] values = map.get(key);
                if (values == null) {
                    values = new double[2];
                    values[0] = 1.0;
                    values[1] = current.weight();
                    map.put(key, values);
                } else {
                    values[0]++;
                    values[1] += current.weight();
                }
            }
        }

        for (Entry<Double, double[]> entry : map.entrySet()) {
            result.addDistinct(entry.getKey(), (int) entry.getValue()[0], entry.getValue()[1]);
        }
        return result;
    }

    /**
     * Gets the value of all instances in this dataset for a particular attribute.
     * Useful in conjunction with Utils.sort to allow iterating through the
     * dataset in sorted order for some attribute.
     * 
     * @param index the index of the attribute.
     * @return an array containing the value of the desired attribute for each
     *         instance in the dataset.
     */
    // @ requires 0 <= index && index < numAttributes();
    public/* @pure@ */double[] attributeToDoubleArray(int index) {

        double[] result = new double[numInstances()];
        for (int i = 0; i < result.length; i++) {
            result[i] = instance(i).value(index);
        }
        return result;
    }

    /**
     * Generates a string summarizing the set of instances. Gives a breakdown for
     * each attribute indicating the number of missing/discrete/unique values and
     * other information.
     * 
     * @return a string summarizing the dataset
     */
    public String toSummaryString() {

        StringBuffer result = new StringBuffer();
        result.append("Relation Name:  ").append(relationName()).append('\n');
        result.append("Num Instances:  ").append(numInstances()).append('\n');
        result.append("Num Attributes: ").append(numAttributes()).append('\n');
        result.append('\n');

        result.append(Utils.padLeft("", 5)).append(Utils.padRight("Name", 25));
        result.append(Utils.padLeft("Type", 5)).append(Utils.padLeft("Nom", 5));
        result.append(Utils.padLeft("Int", 5)).append(Utils.padLeft("Real", 5));
        result.append(Utils.padLeft("Missing", 12));
        result.append(Utils.padLeft("Unique", 12));
        result.append(Utils.padLeft("Dist", 6)).append('\n');

        // Figure out how many digits we need for the index
        int numDigits = (int) Math.log10((int) numAttributes()) + 1;

        for (int i = 0; i < numAttributes(); i++) {
            Attribute a = attribute(i);
            AttributeStats as = attributeStats(i);
            result.append(Utils.padLeft("" + (i + 1), numDigits)).append(' ');
            result.append(Utils.padRight(a.name(), 25)).append(' ');
            long percent;
            switch (a.type()) {
            case Attribute.NOMINAL:
                result.append(Utils.padLeft("Nom", 4)).append(' ');
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            case Attribute.NUMERIC:
                result.append(Utils.padLeft("Num", 4)).append(' ');
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            case Attribute.DATE:
                result.append(Utils.padLeft("Dat", 4)).append(' ');
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            case Attribute.STRING:
                result.append(Utils.padLeft("Str", 4)).append(' ');
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            case Attribute.RELATIONAL:
                result.append(Utils.padLeft("Rel", 4)).append(' ');
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            default:
                result.append(Utils.padLeft("???", 4)).append(' ');
                result.append(Utils.padLeft("" + 0, 3)).append("% ");
                percent = Math.round(100.0 * as.intCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                percent = Math.round(100.0 * as.realCount / as.totalCount);
                result.append(Utils.padLeft("" + percent, 3)).append("% ");
                break;
            }
            result.append(Utils.padLeft("" + as.missingCount, 5)).append(" /");
            percent = Math.round(100.0 * as.missingCount / as.totalCount);
            result.append(Utils.padLeft("" + percent, 3)).append("% ");
            result.append(Utils.padLeft("" + as.uniqueCount, 5)).append(" /");
            percent = Math.round(100.0 * as.uniqueCount / as.totalCount);
            result.append(Utils.padLeft("" + percent, 3)).append("% ");
            result.append(Utils.padLeft("" + as.distinctCount, 5)).append(' ');
            result.append('\n');
        }
        return result.toString();
    }

    /**
     * Copies instances from one set to the end of another one.
     * 
     * @param from the position of the first instance to be copied
     * @param dest the destination for the instances
     * @param num the number of instances to be copied
     */
    // @ requires 0 <= from && from <= numInstances() - num;
    // @ requires 0 <= num;
    protected void copyInstances(int from, /* @non_null@ */Instances dest, int num) {

        for (int i = 0; i < num; i++) {
            dest.add(instance(from + i));
        }
    }

    /**
     * Returns string including all instances, their weights and their indices in
     * the original dataset.
     * 
     * @return description of instance and its weight as a string
     */
    protected/* @pure@ */String instancesAndWeights() {

        StringBuffer text = new StringBuffer();

        for (int i = 0; i < numInstances(); i++) {
            text.append(instance(i) + " " + instance(i).weight());
            if (i < numInstances() - 1) {
                text.append("\n");
            }
        }
        return text.toString();
    }

    /**
     * Help function needed for stratification of set.
     * 
     * @param numFolds the number of folds for the stratification
     */
    protected void stratStep(int numFolds) {

        ArrayList<Instance> newVec = new ArrayList<Instance>(m_Instances.size());
        int start = 0, j;

        // create stratified batch
        while (newVec.size() < numInstances()) {
            j = start;
            while (j < numInstances()) {
                newVec.add(instance(j));
                j = j + numFolds;
            }
            start++;
        }
        m_Instances = newVec;
    }

    /**
     * Swaps two instances in the set.
     * 
     * @param i the first instance's index (index starts with 0)
     * @param j the second instance's index (index starts with 0)
     */
    // @ requires 0 <= i && i < numInstances();
    // @ requires 0 <= j && j < numInstances();
    public void swap(int i, int j) {

        Instance in = m_Instances.get(i);
        m_Instances.set(i, m_Instances.get(j));
        m_Instances.set(j, in);
    }

    /**
     * Merges two sets of Instances together. The resulting set will have all the
     * attributes of the first set plus all the attributes of the second set. The
     * number of instances in both sets must be the same.
     * 
     * @param first the first set of Instances
     * @param second the second set of Instances
     * @return the merged set of Instances
     * @throws IllegalArgumentException if the datasets are not the same size
     */
    public static Instances mergeInstances(Instances first, Instances second) {

        if (first.numInstances() != second.numInstances()) {
            throw new IllegalArgumentException("Instance sets must be of the same size");
        }

        // Create the vector of merged attributes
        ArrayList<Attribute> newAttributes = new ArrayList<Attribute>(
                first.numAttributes() + second.numAttributes());
        for (Attribute att : first.m_Attributes) {
            newAttributes.add(att);
        }
        for (Attribute att : second.m_Attributes) {
            newAttributes.add((Attribute) att.copy()); // Need to copy because indices will change.
        }

        // Create the set of Instances
        Instances merged = new Instances(first.relationName() + '_' + second.relationName(), newAttributes,
                first.numInstances());
        // Merge each instance
        for (int i = 0; i < first.numInstances(); i++) {
            merged.add(first.instance(i).mergeInstance(second.instance(i)));
        }
        return merged;
    }

    /**
     * Method for testing this class.
     * 
     * @param argv should contain one element: the name of an ARFF file
     */
    // @ requires argv != null;
    // @ requires argv.length == 1;
    // @ requires argv[0] != null;
    public static void test(String[] argv) {

        Instances instances, secondInstances, train, test, empty;
        Random random = new Random(2);
        Reader reader;
        int start, num;
        ArrayList<Attribute> testAtts;
        ArrayList<String> testVals;
        int i, j;

        try {
            if (argv.length > 1) {
                throw (new Exception("Usage: Instances [<filename>]"));
            }

            // Creating set of instances from scratch
            testVals = new ArrayList<String>(2);
            testVals.add("first_value");
            testVals.add("second_value");
            testAtts = new ArrayList<Attribute>(2);
            testAtts.add(new Attribute("nominal_attribute", testVals));
            testAtts.add(new Attribute("numeric_attribute"));
            instances = new Instances("test_set", testAtts, 10);
            instances.add(new DenseInstance(instances.numAttributes()));
            instances.add(new DenseInstance(instances.numAttributes()));
            instances.add(new DenseInstance(instances.numAttributes()));
            instances.setClassIndex(0);
            System.out.println("\nSet of instances created from scratch:\n");
            System.out.println(instances);

            if (argv.length == 1) {
                String filename = argv[0];
                reader = new FileReader(filename);

                // Read first five instances and print them
                System.out.println("\nFirst five instances from file:\n");
                instances = new Instances(reader, 1);
                instances.setClassIndex(instances.numAttributes() - 1);
                i = 0;
                while ((i < 5) && (instances.readInstance(reader))) {
                    i++;
                }
                System.out.println(instances);

                // Read all the instances in the file
                reader = new FileReader(filename);
                instances = new Instances(reader);

                // Make the last attribute be the class
                instances.setClassIndex(instances.numAttributes() - 1);

                // Print header and instances.
                System.out.println("\nDataset:\n");
                System.out.println(instances);
                System.out.println("\nClass index: " + instances.classIndex());
            }

            // Test basic methods based on class index.
            System.out.println("\nClass name: " + instances.classAttribute().name());
            System.out.println("\nClass index: " + instances.classIndex());
            System.out.println("\nClass is nominal: " + instances.classAttribute().isNominal());
            System.out.println("\nClass is numeric: " + instances.classAttribute().isNumeric());
            System.out.println("\nClasses:\n");
            for (i = 0; i < instances.numClasses(); i++) {
                System.out.println(instances.classAttribute().value(i));
            }
            System.out.println("\nClass values and labels of instances:\n");
            for (i = 0; i < instances.numInstances(); i++) {
                Instance inst = instances.instance(i);
                System.out.print(inst.classValue() + "\t");
                System.out.print(inst.toString(inst.classIndex()));
                if (instances.instance(i).classIsMissing()) {
                    System.out.println("\tis missing");
                } else {
                    System.out.println();
                }
            }

            // Create random weights.
            System.out.println("\nCreating random weights for instances.");
            for (i = 0; i < instances.numInstances(); i++) {
                instances.instance(i).setWeight(random.nextDouble());
            }

            // Print all instances and their weights (and the sum of weights).
            System.out.println("\nInstances and their weights:\n");
            System.out.println(instances.instancesAndWeights());
            System.out.print("\nSum of weights: ");
            System.out.println(instances.sumOfWeights());

            // Insert an attribute
            secondInstances = new Instances(instances);
            Attribute testAtt = new Attribute("Inserted");
            secondInstances.insertAttributeAt(testAtt, 0);
            System.out.println("\nSet with inserted attribute:\n");
            System.out.println(secondInstances);
            System.out.println("\nClass name: " + secondInstances.classAttribute().name());

            // Delete the attribute
            secondInstances.deleteAttributeAt(0);
            System.out.println("\nSet with attribute deleted:\n");
            System.out.println(secondInstances);
            System.out.println("\nClass name: " + secondInstances.classAttribute().name());

            // Test if headers are equal
            System.out.println("\nHeaders equal: " + instances.equalHeaders(secondInstances) + "\n");

            // Print data in internal format.
            System.out.println("\nData (internal values):\n");
            for (i = 0; i < instances.numInstances(); i++) {
                for (j = 0; j < instances.numAttributes(); j++) {
                    if (instances.instance(i).isMissing(j)) {
                        System.out.print("? ");
                    } else {
                        System.out.print(instances.instance(i).value(j) + " ");
                    }
                }
                System.out.println();
            }

            // Just print header
            System.out.println("\nEmpty dataset:\n");
            empty = new Instances(instances, 0);
            System.out.println(empty);
            System.out.println("\nClass name: " + empty.classAttribute().name());

            // Create copy and rename an attribute and a value (if possible)
            if (empty.classAttribute().isNominal()) {
                Instances copy = new Instances(empty, 0);
                copy.renameAttribute(copy.classAttribute(), "new_name");
                copy.renameAttributeValue(copy.classAttribute(), copy.classAttribute().value(0), "new_val_name");
                System.out.println("\nDataset with names changed:\n" + copy);
                System.out.println("\nOriginal dataset:\n" + empty);
            }

            // Create and prints subset of instances.
            start = instances.numInstances() / 4;
            num = instances.numInstances() / 2;
            System.out.print("\nSubset of dataset: ");
            System.out.println(num + " instances from " + (start + 1) + ". instance");
            secondInstances = new Instances(instances, start, num);
            System.out.println("\nClass name: " + secondInstances.classAttribute().name());

            // Print all instances and their weights (and the sum of weights).
            System.out.println("\nInstances and their weights:\n");
            System.out.println(secondInstances.instancesAndWeights());
            System.out.print("\nSum of weights: ");
            System.out.println(secondInstances.sumOfWeights());

            // Create and print training and test sets for 3-fold
            // cross-validation.
            System.out.println("\nTrain and test folds for 3-fold CV:");
            if (instances.classAttribute().isNominal()) {
                instances.stratify(3);
            }
            for (j = 0; j < 3; j++) {
                train = instances.trainCV(3, j, new Random(1));
                test = instances.testCV(3, j);

                // Print all instances and their weights (and the sum of weights).
                System.out.println("\nTrain: ");
                System.out.println("\nInstances and their weights:\n");
                System.out.println(train.instancesAndWeights());
                System.out.print("\nSum of weights: ");
                System.out.println(train.sumOfWeights());
                System.out.println("\nClass name: " + train.classAttribute().name());
                System.out.println("\nTest: ");
                System.out.println("\nInstances and their weights:\n");
                System.out.println(test.instancesAndWeights());
                System.out.print("\nSum of weights: ");
                System.out.println(test.sumOfWeights());
                System.out.println("\nClass name: " + test.classAttribute().name());
            }

            // Randomize instances and print them.
            System.out.println("\nRandomized dataset:");
            instances.randomize(random);

            // Print all instances and their weights (and the sum of weights).
            System.out.println("\nInstances and their weights:\n");
            System.out.println(instances.instancesAndWeights());
            System.out.print("\nSum of weights: ");
            System.out.println(instances.sumOfWeights());

            // Sort instances according to first attribute and
            // print them.
            System.out.print("\nInstances sorted according to first attribute:\n ");
            instances.sort(0);

            // Print all instances and their weights (and the sum of weights).
            System.out.println("\nInstances and their weights:\n");
            System.out.println(instances.instancesAndWeights());
            System.out.print("\nSum of weights: ");
            System.out.println(instances.sumOfWeights());
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * Main method for this class. The following calls are possible:
     * <ul>
     * <li>
     * <code>weka.core.Instances</code> help<br/>
     * prints a short list of possible commands.</li>
     * <li>
     * <code>weka.core.Instances</code> &lt;filename&gt;<br/>
     * prints a summary of a set of instances.</li>
     * <li>
     * <code>weka.core.Instances</code> merge &lt;filename1&gt; &lt;filename2&gt;<br/>
     * merges the two datasets (must have same number of instances) and outputs
     * the results on stdout.</li>
     * <li>
     * <code>weka.core.Instances</code> append &lt;filename1&gt; &lt;filename2&gt;
     * <br/>
     * appends the second dataset to the first one (must have same headers) and
     * outputs the results on stdout.</li>
     * <li>
     * <code>weka.core.Instances</code> headers &lt;filename1&gt;
     * &lt;filename2&gt;<br/>
     * Compares the headers of the two datasets and prints whether they match or
     * not.</li>
     * <li>
     * <code>weka.core.Instances</code> randomize &lt;seed&gt; &lt;filename&gt;<br/>
     * randomizes the dataset with the given seed and outputs the result on
     * stdout.</li>
     * </ul>
     * 
     * @param args the commandline parameters
     */
    public static void main(String[] args) {

        try {
            Instances i;
            // read from stdin and print statistics
            if (args.length == 0) {
                DataSource source = new DataSource(System.in);
                i = source.getDataSet();
                System.out.println(i.toSummaryString());
            }
            // read file and print statistics
            else if ((args.length == 1) && (!args[0].equals("-h")) && (!args[0].equals("help"))) {
                DataSource source = new DataSource(args[0]);
                i = source.getDataSet();
                System.out.println(i.toSummaryString());
            }
            // read two files, merge them and print result to stdout
            else if ((args.length == 3) && (args[0].toLowerCase().equals("merge"))) {
                DataSource source1 = new DataSource(args[1]);
                DataSource source2 = new DataSource(args[2]);
                i = Instances.mergeInstances(source1.getDataSet(), source2.getDataSet());
                System.out.println(i);
            }
            // read two files, append them and print result to stdout
            else if ((args.length == 3) && (args[0].toLowerCase().equals("append"))) {
                DataSource source1 = new DataSource(args[1]);
                DataSource source2 = new DataSource(args[2]);
                String msg = source1.getStructure().equalHeadersMsg(source2.getStructure());
                if (msg != null) {
                    throw new Exception("The two datasets have different headers:\n" + msg);
                }
                Instances structure = source1.getStructure();
                System.out.println(source1.getStructure());
                while (source1.hasMoreElements(structure)) {
                    System.out.println(source1.nextElement(structure));
                }
                structure = source2.getStructure();
                while (source2.hasMoreElements(structure)) {
                    System.out.println(source2.nextElement(structure));
                }
            }
            // read two files and compare their headers
            else if ((args.length == 3) && (args[0].toLowerCase().equals("headers"))) {
                DataSource source1 = new DataSource(args[1]);
                DataSource source2 = new DataSource(args[2]);
                String msg = source1.getStructure().equalHeadersMsg(source2.getStructure());
                if (msg == null) {
                    System.out.println("Headers match");
                } else {
                    System.out.println("Headers don't match:\n" + msg);
                }
            }
            // read file and seed value, randomize data and print result to stdout
            else if ((args.length == 3) && (args[0].toLowerCase().equals("randomize"))) {
                DataSource source = new DataSource(args[2]);
                i = source.getDataSet();
                i.randomize(new Random(Integer.parseInt(args[1])));
                System.out.println(i);
            }
            // wrong parameters or help
            else {
                System.err.println("\nUsage:\n"
                        // help
                        + "\tweka.core.Instances help\n" + "\t\tPrints this help\n"
                        // stats
                        + "\tweka.core.Instances <filename>\n" + "\t\tOutputs dataset statistics\n"
                        // merge
                        + "\tweka.core.Instances merge <filename1> <filename2>\n"
                        + "\t\tMerges the datasets (must have same number of rows).\n"
                        + "\t\tGenerated dataset gets output on stdout.\n"
                        // append
                        + "\tweka.core.Instances append <filename1> <filename2>\n"
                        + "\t\tAppends the second dataset to the first (must have same number of attributes).\n"
                        + "\t\tGenerated dataset gets output on stdout.\n"
                        // headers
                        + "\tweka.core.Instances headers <filename1> <filename2>\n"
                        + "\t\tCompares the structure of the two datasets and outputs whether they\n"
                        + "\t\tdiffer or not.\n"
                        // randomize
                        + "\tweka.core.Instances randomize <seed> <filename>\n"
                        + "\t\tRandomizes the dataset and outputs it on stdout.\n");
            }
        } catch (Exception ex) {
            ex.printStackTrace();
            System.err.println(ex.getMessage());
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
}