weka.filters.supervised.attribute.Discretize.java Source code

Java tutorial

Introduction

Here is the source code for weka.filters.supervised.attribute.Discretize.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Discretize.java
 *    Copyright (C) 1999-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.filters.supervised.attribute;

import java.util.*;

import weka.core.*;
import weka.core.Capabilities.Capability;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.filters.Filter;
import weka.filters.SupervisedFilter;

/**
 <!-- globalinfo-start -->
 * An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by Fayyad &amp; Irani's MDL method (the default).<br/>
 * <br/>
 * For more information, see:<br/>
 * <br/>
 * Usama M. Fayyad, Keki B. Irani: Multi-interval discretization of continuousvalued attributes for classification learning. In: Thirteenth International Joint Conference on Articial Intelligence, 1022-1027, 1993.<br/>
 * <br/>
 * Igor Kononenko: On Biases in Estimating Multi-Valued Attributes. In: 14th International Joint Conference on Articial Intelligence, 1034-1040, 1995.
 * <p/>
 <!-- globalinfo-end -->
 * 
 <!-- technical-bibtex-start -->
 * BibTeX:
 * <pre>
 * &#64;inproceedings{Fayyad1993,
 *    author = {Usama M. Fayyad and Keki B. Irani},
 *    booktitle = {Thirteenth International Joint Conference on Articial Intelligence},
 *    pages = {1022-1027},
 *    publisher = {Morgan Kaufmann Publishers},
 *    title = {Multi-interval discretization of continuousvalued attributes for classification learning},
 *    volume = {2},
 *    year = {1993}
 * }
 * 
 * &#64;inproceedings{Kononenko1995,
 *    author = {Igor Kononenko},
 *    booktitle = {14th International Joint Conference on Articial Intelligence},
 *    pages = {1034-1040},
 *    title = {On Biases in Estimating Multi-Valued Attributes},
 *    year = {1995},
 *    PS = {http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz}
 * }
 * </pre>
 * <p/>
 <!-- technical-bibtex-end -->
 * 
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -R &lt;col1,col2-col4,...&gt;
 *  Specifies list of columns to Discretize. First and last are valid indexes.
 *  (default none)</pre>
 * 
 * <pre> -V
 *  Invert matching sense of column indexes.</pre>
 * 
 * <pre> -D
 *  Output binary attributes for discretized attributes.</pre>
 * 
 * <pre> -Y
 *  Use bin numbers rather than ranges for discretized attributes.</pre>
 * 
 * <pre> -E
 *  Use better encoding of split point for MDL.</pre>
 * 
 * <pre> -K
 *  Use Kononenko's MDL criterion.</pre>
 * 
 * <pre> -precision &lt;integer&gt;
 *  Precision for bin boundary labels.
 *  (default = 6 decimal places).</pre>
 *
 * <pre>-spread-attribute-weight
 *  When generating binary attributes, spread weight of old
 *  attribute across new attributes. Do not give each new attribute the old weight.</pre>
 *
 <!-- options-end -->
 * 
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class Discretize extends Filter implements SupervisedFilter, OptionHandler, WeightedInstancesHandler,
        WeightedAttributesHandler, TechnicalInformationHandler {

    /** for serialization */
    static final long serialVersionUID = -3141006402280129097L;

    /** Stores which columns to Discretize */
    protected Range m_DiscretizeCols = new Range();

    /** Store the current cutpoints */
    protected double[][] m_CutPoints = null;

    /** Output binary attributes for discretized attributes. */
    protected boolean m_MakeBinary = false;

    /** Use bin numbers rather than ranges for discretized attributes. */
    protected boolean m_UseBinNumbers = false;

    /** Use better encoding of split point for MDL. */
    protected boolean m_UseBetterEncoding = false;

    /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */
    protected boolean m_UseKononenko = false;

    /** Precision for bin range labels */
    protected int m_BinRangePrecision = 6;

    /** Whether to spread attribute weight when creating binary attributes */
    protected boolean m_SpreadAttributeWeight = false;

    /** Constructor - initialises the filter */
    public Discretize() {

        setAttributeIndices("first-last");
    }

    /**
     * Gets an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        Vector<Option> newVector = new Vector<Option>(6);

        newVector.addElement(new Option("\tSpecifies list of columns to Discretize. First"
                + " and last are valid indexes.\n" + "\t(default none)", "R", 1, "-R <col1,col2-col4,...>"));

        newVector.addElement(new Option("\tInvert matching sense of column indexes.", "V", 0, "-V"));

        newVector.addElement(new Option("\tOutput binary attributes for discretized attributes.", "D", 0, "-D"));

        newVector.addElement(
                new Option("\tUse bin numbers rather than ranges for discretized attributes.", "Y", 0, "-Y"));

        newVector.addElement(new Option("\tUse better encoding of split point for MDL.", "E", 0, "-E"));

        newVector.addElement(new Option("\tUse Kononenko's MDL criterion.", "K", 0, "-K"));

        newVector
                .addElement(new Option("\tPrecision for bin boundary labels.\n\t" + "(default = 6 decimal places).",
                        "precision", 1, "-precision <integer>"));

        newVector.addElement(new Option(
                "\tWhen generating binary attributes, spread weight of old "
                        + "attribute across new attributes. Do not give each new attribute the old weight.\n\t",
                "spread-attribute-weight", 0, "-spread-attribute-weight"));

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     <!-- options-start -->
     * Valid options are: <p/>
     * 
     * <pre> -R &lt;col1,col2-col4,...&gt;
     *  Specifies list of columns to Discretize. First and last are valid indexes.
     *  (default none)</pre>
     * 
     * <pre> -V
     *  Invert matching sense of column indexes.</pre>
     * 
     * <pre> -D
     *  Output binary attributes for discretized attributes.</pre>
     * 
     * <pre> -Y
     *  Use bin numbers rather than ranges for discretized attributes.</pre>
     * 
     * <pre> -E
     *  Use better encoding of split point for MDL.</pre>
     * 
     * <pre> -K
     *  Use Kononenko's MDL criterion.</pre>
     * 
     * <pre> -precision &lt;integer&gt;
     *  Precision for bin boundary labels.
     *  (default = 6 decimal places).</pre>
     *
     * <pre>-spread-attribute-weight
     *  When generating binary attributes, spread weight of old
     *  attribute across new attributes. Do not give each new attribute the old weight.</pre>
     *
     <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        setMakeBinary(Utils.getFlag('D', options));
        setUseBinNumbers(Utils.getFlag('Y', options));
        setUseBetterEncoding(Utils.getFlag('E', options));
        setUseKononenko(Utils.getFlag('K', options));
        setInvertSelection(Utils.getFlag('V', options));

        String convertList = Utils.getOption('R', options);
        if (convertList.length() != 0) {
            setAttributeIndices(convertList);
        } else {
            setAttributeIndices("first-last");
        }

        String precisionS = Utils.getOption("precision", options);
        if (precisionS.length() > 0) {
            setBinRangePrecision(Integer.parseInt(precisionS));
        }

        setSpreadAttributeWeight(Utils.getFlag("spread-attribute-weight", options));

        if (getInputFormat() != null) {
            setInputFormat(getInputFormat());
        }

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the filter.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        List<String> options = new ArrayList<String>();

        if (getMakeBinary()) {
            options.add("-D");
        }
        if (getUseBinNumbers()) {
            options.add("-Y");
        }
        if (getUseBetterEncoding()) {
            options.add("-E");
        }
        if (getUseKononenko()) {
            options.add("-K");
        }
        if (getInvertSelection()) {
            options.add("-V");
        }
        if (!getAttributeIndices().equals("")) {
            options.add("-R");
            options.add(getAttributeIndices());
        }

        options.add("-precision");
        options.add("" + getBinRangePrecision());

        if (getSpreadAttributeWeight()) {
            options.add("-spread-attribute-weight");
        }

        return options.toArray(new String[options.size()]);
    }

    /**
     * Returns the Capabilities of this filter.
     * 
     * @return the capabilities of this object
     * @see Capabilities
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enableAllAttributes();
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);

        return result;
    }

    /**
     * Sets the format of the input instances.
     * 
     * @param instanceInfo an Instances object containing the input instance
     *          structure (any instances contained in the object are ignored -
     *          only the structure is required).
     * @return true if the outputFormat may be collected immediately
     * @throws Exception if the input format can't be set successfully
     */
    @Override
    public boolean setInputFormat(Instances instanceInfo) throws Exception {

        super.setInputFormat(instanceInfo);

        m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1);
        m_CutPoints = null;

        // If we implement loading cutfiles, then load
        // them here and set the output format
        return false;
    }

    /**
     * Input an instance for filtering. Ordinarily the instance is processed and
     * made available for output immediately. Some filters require all instances
     * be read before producing output.
     * 
     * @param instance the input instance
     * @return true if the filtered instance may now be collected with output().
     * @throws IllegalStateException if no input format has been defined.
     */
    @Override
    public boolean input(Instance instance) {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }
        if (m_NewBatch) {
            resetQueue();
            m_NewBatch = false;
        }

        if (m_CutPoints != null) {
            convertInstance(instance);
            return true;
        }

        bufferInput(instance);
        return false;
    }

    /**
     * Signifies that this batch of input to the filter is finished. If the filter
     * requires all instances prior to filtering, output() may now be called to
     * retrieve the filtered instances.
     * 
     * @return true if there are instances pending output
     * @throws IllegalStateException if no input structure has been defined
     */
    @Override
    public boolean batchFinished() {

        if (getInputFormat() == null) {
            throw new IllegalStateException("No input instance format defined");
        }
        if (m_CutPoints == null) {
            calculateCutPoints();

            setOutputFormat();

            // If we implement saving cutfiles, save the cuts here

            // Convert pending input instances
            for (int i = 0; i < getInputFormat().numInstances(); i++) {
                convertInstance(getInputFormat().instance(i));
            }
        }
        flushInput();

        m_NewBatch = true;
        return (numPendingOutput() != 0);
    }

    /**
     * Returns a string describing this filter
     * 
     * @return a description of the filter suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {

        return "An instance filter that discretizes a range of numeric"
                + " attributes in the dataset into nominal attributes."
                + " Discretization is by Fayyad & Irani's MDL method (the default).\n\n"
                + "For more information, see:\n\n" + getTechnicalInformation().toString();
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;
        TechnicalInformation additional;

        result = new TechnicalInformation(Type.INPROCEEDINGS);
        result.setValue(Field.AUTHOR, "Usama M. Fayyad and Keki B. Irani");
        result.setValue(Field.TITLE,
                "Multi-interval discretization of continuousvalued attributes for classification learning");
        result.setValue(Field.BOOKTITLE, "Thirteenth International Joint Conference on Articial Intelligence");
        result.setValue(Field.YEAR, "1993");
        result.setValue(Field.VOLUME, "2");
        result.setValue(Field.PAGES, "1022-1027");
        result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers");

        additional = result.add(Type.INPROCEEDINGS);
        additional.setValue(Field.AUTHOR, "Igor Kononenko");
        additional.setValue(Field.TITLE, "On Biases in Estimating Multi-Valued Attributes");
        additional.setValue(Field.BOOKTITLE, "14th International Joint Conference on Articial Intelligence");
        additional.setValue(Field.YEAR, "1995");
        additional.setValue(Field.PAGES, "1034-1040");
        additional.setValue(Field.PS, "http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz");

        return result;
    }

    /**
     * Returns the tip text for this property
     *
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String spreadAttributeWeightTipText() {
        return "When generating binary attributes, spread weight of old attribute across new attributes. "
                + "Do not give each new attribute the old weight.";
    }

    /**
     * If true, when generating binary attributes, spread weight of old
     * attribute across new attributes. Do not give each new attribute the old weight.
     *
     * @param p whether weight is spread
     */
    public void setSpreadAttributeWeight(boolean p) {
        m_SpreadAttributeWeight = p;
    }

    /**
     * If true, when generating binary attributes, spread weight of old
     * attribute across new attributes. Do not give each new attribute the old weight.
     *
     * @return whether weight is spread
     */
    public boolean getSpreadAttributeWeight() {
        return m_SpreadAttributeWeight;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String binRangePrecisionTipText() {
        return "The number of decimal places for cut points to use when generating bin labels";
    }

    /**
     * Set the precision for bin boundaries. Only affects the boundary values used
     * in the labels for the converted attributes; internal cutpoints are at full
     * double precision.
     * 
     * @param p the precision for bin boundaries
     */
    public void setBinRangePrecision(int p) {
        m_BinRangePrecision = p;
    }

    /**
     * Get the precision for bin boundaries. Only affects the boundary values used
     * in the labels for the converted attributes; internal cutpoints are at full
     * double precision.
     * 
     * @return the precision for bin boundaries
     */
    public int getBinRangePrecision() {
        return m_BinRangePrecision;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String makeBinaryTipText() {

        return "Make resulting attributes binary.";
    }

    /**
     * Gets whether binary attributes should be made for discretized ones.
     * 
     * @return true if attributes will be binarized
     */
    public boolean getMakeBinary() {

        return m_MakeBinary;
    }

    /**
     * Sets whether binary attributes should be made for discretized ones.
     * 
     * @param makeBinary if binary attributes are to be made
     */
    public void setMakeBinary(boolean makeBinary) {

        m_MakeBinary = makeBinary;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useBinNumbersTipText() {
        return "Use bin numbers (eg BXofY) rather than ranges fordiscretized attributes";
    }

    /**
     * Gets whether bin numbers rather than ranges should be used for discretized
     * attributes.
     * 
     * @return true if bin numbers should be used
     */
    public boolean getUseBinNumbers() {

        return m_UseBinNumbers;
    }

    /**
     * Sets whether bin numbers rather than ranges should be used for discretized
     * attributes.
     * 
     * @param useBinNumbers if bin numbers should be used
     */
    public void setUseBinNumbers(boolean useBinNumbers) {

        m_UseBinNumbers = useBinNumbers;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useKononenkoTipText() {

        return "Use Kononenko's MDL criterion. If set to false" + " uses the Fayyad & Irani criterion.";
    }

    /**
     * Gets whether Kononenko's MDL criterion is to be used.
     * 
     * @return true if Kononenko's criterion will be used.
     */
    public boolean getUseKononenko() {

        return m_UseKononenko;
    }

    /**
     * Sets whether Kononenko's MDL criterion is to be used.
     * 
     * @param useKon true if Kononenko's one is to be used
     */
    public void setUseKononenko(boolean useKon) {

        m_UseKononenko = useKon;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useBetterEncodingTipText() {

        return "Uses a more efficient split point encoding.";
    }

    /**
     * Gets whether better encoding is to be used for MDL.
     * 
     * @return true if the better MDL encoding will be used
     */
    public boolean getUseBetterEncoding() {

        return m_UseBetterEncoding;
    }

    /**
     * Sets whether better encoding is to be used for MDL.
     * 
     * @param useBetterEncoding true if better encoding to be used.
     */
    public void setUseBetterEncoding(boolean useBetterEncoding) {

        m_UseBetterEncoding = useBetterEncoding;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String invertSelectionTipText() {

        return "Set attribute selection mode. If false, only selected"
                + " (numeric) attributes in the range will be discretized; if"
                + " true, only non-selected attributes will be discretized.";
    }

    /**
     * Gets whether the supplied columns are to be removed or kept
     * 
     * @return true if the supplied columns will be kept
     */
    public boolean getInvertSelection() {

        return m_DiscretizeCols.getInvert();
    }

    /**
     * Sets whether selected columns should be removed or kept. If true the
     * selected columns are kept and unselected columns are deleted. If false
     * selected columns are deleted and unselected columns are kept.
     * 
     * @param invert the new invert setting
     */
    public void setInvertSelection(boolean invert) {

        m_DiscretizeCols.setInvert(invert);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String attributeIndicesTipText() {
        return "Specify range of attributes to act on."
                + " This is a comma separated list of attribute indices, with"
                + " \"first\" and \"last\" valid values. Specify an inclusive"
                + " range with \"-\". E.g: \"first-3,5,6-10,last\".";
    }

    /**
     * Gets the current range selection
     * 
     * @return a string containing a comma separated list of ranges
     */
    public String getAttributeIndices() {

        return m_DiscretizeCols.getRanges();
    }

    /**
     * Sets which attributes are to be Discretized (only numeric attributes among
     * the selection will be Discretized).
     * 
     * @param rangeList a string representing the list of attributes. Since the
     *          string will typically come from a user, attributes are indexed
     *          from 1. <br>
     *          eg: first-3,5,6-last
     * @throws IllegalArgumentException if an invalid range list is supplied
     */
    public void setAttributeIndices(String rangeList) {

        m_DiscretizeCols.setRanges(rangeList);
    }

    /**
     * Sets which attributes are to be Discretized (only numeric attributes among
     * the selection will be Discretized).
     * 
     * @param attributes an array containing indexes of attributes to Discretize.
     *          Since the array will typically come from a program, attributes are
     *          indexed from 0.
     * @throws IllegalArgumentException if an invalid set of ranges is supplied
     */
    public void setAttributeIndicesArray(int[] attributes) {

        setAttributeIndices(Range.indicesToRangeList(attributes));
    }

    /**
     * Gets the cut points for an attribute
     * 
     * @param attributeIndex the index (from 0) of the attribute to get the cut
     *          points of
     * @return an array containing the cutpoints (or null if the attribute
     *         requested isn't being Discretized
     */
    public double[] getCutPoints(int attributeIndex) {

        if (m_CutPoints == null) {
            return null;
        }
        return m_CutPoints[attributeIndex];
    }

    /**
     * Gets the bin ranges string for an attribute
     * 
     * @param attributeIndex the index (from 0) of the attribute to get the bin
     *          ranges string of
     * @return the bin ranges string (or null if the attribute requested has been
     *         discretized into only one interval.)
     */
    public String getBinRangesString(int attributeIndex) {

        if (m_CutPoints == null) {
            return null;
        }

        double[] cutPoints = m_CutPoints[attributeIndex];

        if (cutPoints == null) {
            return "All";
        }

        StringBuilder sb = new StringBuilder();
        boolean first = true;

        for (int j = 0, n = cutPoints.length; j <= n; ++j) {
            if (first) {
                first = false;
            } else {
                sb.append(',');
            }

            sb.append(binRangeString(cutPoints, j, m_BinRangePrecision));
        }

        return sb.toString();
    }

    /**
     * Get a bin range string for a specified bin of some attribute's cut points.
     * 
     * @param cutPoints The attribute's cut points; never null.
     * @param j The bin number (zero based); never out of range.
     * @param precision the precision for the range values
     * 
     * @return The bin range string.
     */
    private static String binRangeString(double[] cutPoints, int j, int precision) {
        assert cutPoints != null;

        int n = cutPoints.length;
        assert 0 <= j && j <= n;

        return j == 0 ? "" + "(" + "-inf" + "-" + Utils.doubleToString(cutPoints[0], precision) + "]"
                : j == n ? "" + "(" + Utils.doubleToString(cutPoints[n - 1], precision) + "-" + "inf" + ")"
                        : "" + "(" + Utils.doubleToString(cutPoints[j - 1], precision) + "-"
                                + Utils.doubleToString(cutPoints[j], precision) + "]";
    }

    /** Generate the cutpoints for each attribute */
    protected void calculateCutPoints() {

        Instances copy = null;

        m_CutPoints = new double[getInputFormat().numAttributes()][];
        for (int i = getInputFormat().numAttributes() - 1; i >= 0; i--) {
            if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())) {

                // Use copy to preserve order
                if (copy == null) {
                    copy = new Instances(getInputFormat());
                }
                calculateCutPointsByMDL(i, copy);
            }
        }
    }

    /**
     * Set cutpoints for a single attribute using MDL.
     * 
     * @param index the index of the attribute to set cutpoints for
     * @param data the data to work with
     */
    protected void calculateCutPointsByMDL(int index, Instances data) {

        // Sort instances
        data.sort(data.attribute(index));

        // Find first instances that's missing
        int firstMissing = data.numInstances();
        for (int i = 0; i < data.numInstances(); i++) {
            if (data.instance(i).isMissing(index)) {
                firstMissing = i;
                break;
            }
        }
        m_CutPoints[index] = cutPointsForSubset(data, index, 0, firstMissing);
    }

    /**
     * Test using Kononenko's MDL criterion.
     * 
     * @param priorCounts
     * @param bestCounts
     * @param numInstances
     * @param numCutPoints
     * @return true if the split is acceptable
     */
    private boolean KononenkosMDL(double[] priorCounts, double[][] bestCounts, double numInstances,
            int numCutPoints) {

        double distPrior, instPrior, distAfter = 0, sum, instAfter = 0;
        double before, after;
        int numClassesTotal;

        // Number of classes occuring in the set
        numClassesTotal = 0;
        for (double priorCount : priorCounts) {
            if (priorCount > 0) {
                numClassesTotal++;
            }
        }

        // Encode distribution prior to split
        distPrior = SpecialFunctions.log2Binomial(numInstances + numClassesTotal - 1, numClassesTotal - 1);

        // Encode instances prior to split.
        instPrior = SpecialFunctions.log2Multinomial(numInstances, priorCounts);

        before = instPrior + distPrior;

        // Encode distributions and instances after split.
        for (double[] bestCount : bestCounts) {
            sum = Utils.sum(bestCount);
            distAfter += SpecialFunctions.log2Binomial(sum + numClassesTotal - 1, numClassesTotal - 1);
            instAfter += SpecialFunctions.log2Multinomial(sum, bestCount);
        }

        // Coding cost after split
        after = Utils.log2(numCutPoints) + distAfter + instAfter;

        // Check if split is to be accepted
        return (before > after);
    }

    /**
     * Test using Fayyad and Irani's MDL criterion.
     * 
     * @param priorCounts
     * @param bestCounts
     * @param numInstances
     * @param numCutPoints
     * @return true if the splits is acceptable
     */
    private boolean FayyadAndIranisMDL(double[] priorCounts, double[][] bestCounts, double numInstances,
            int numCutPoints) {

        double priorEntropy, entropy, gain;
        double entropyLeft, entropyRight, delta;
        int numClassesTotal, numClassesRight, numClassesLeft;

        // Compute entropy before split.
        priorEntropy = ContingencyTables.entropy(priorCounts);

        // Compute entropy after split.
        entropy = ContingencyTables.entropyConditionedOnRows(bestCounts);

        // Compute information gain.
        gain = priorEntropy - entropy;

        // Number of classes occuring in the set
        numClassesTotal = 0;
        for (double priorCount : priorCounts) {
            if (priorCount > 0) {
                numClassesTotal++;
            }
        }

        // Number of classes occuring in the left subset
        numClassesLeft = 0;
        for (int i = 0; i < bestCounts[0].length; i++) {
            if (bestCounts[0][i] > 0) {
                numClassesLeft++;
            }
        }

        // Number of classes occuring in the right subset
        numClassesRight = 0;
        for (int i = 0; i < bestCounts[1].length; i++) {
            if (bestCounts[1][i] > 0) {
                numClassesRight++;
            }
        }

        // Entropy of the left and the right subsets
        entropyLeft = ContingencyTables.entropy(bestCounts[0]);
        entropyRight = ContingencyTables.entropy(bestCounts[1]);

        // Compute terms for MDL formula
        delta = Utils.log2(Math.pow(3, numClassesTotal) - 2) - ((numClassesTotal * priorEntropy)
                - (numClassesRight * entropyRight) - (numClassesLeft * entropyLeft));

        // Check if split is to be accepted
        return (gain > (Utils.log2(numCutPoints) + delta) / numInstances);
    }

    /**
     * Selects cutpoints for sorted subset.
     * 
     * @param instances
     * @param attIndex
     * @param first
     * @param lastPlusOne
     * @return
     */
    private double[] cutPointsForSubset(Instances instances, int attIndex, int first, int lastPlusOne) {

        double[][] counts, bestCounts;
        double[] priorCounts, left, right, cutPoints;
        double currentCutPoint = -Double.MAX_VALUE, bestCutPoint = -1, currentEntropy, bestEntropy, priorEntropy,
                gain;
        int bestIndex = -1, numCutPoints = 0;
        double numInstances = 0;

        // Compute number of instances in set
        if ((lastPlusOne - first) < 2) {
            return null;
        }

        // Compute class counts.
        counts = new double[2][instances.numClasses()];
        for (int i = first; i < lastPlusOne; i++) {
            numInstances += instances.instance(i).weight();
            counts[1][(int) instances.instance(i).classValue()] += instances.instance(i).weight();
        }

        // Save prior counts
        priorCounts = new double[instances.numClasses()];
        System.arraycopy(counts[1], 0, priorCounts, 0, instances.numClasses());

        // Entropy of the full set
        priorEntropy = ContingencyTables.entropy(priorCounts);
        bestEntropy = priorEntropy;

        // Find best entropy.
        bestCounts = new double[2][instances.numClasses()];
        for (int i = first; i < (lastPlusOne - 1); i++) {
            counts[0][(int) instances.instance(i).classValue()] += instances.instance(i).weight();
            counts[1][(int) instances.instance(i).classValue()] -= instances.instance(i).weight();
            if (instances.instance(i).value(attIndex) < instances.instance(i + 1).value(attIndex)) {
                currentCutPoint = (instances.instance(i).value(attIndex)
                        + instances.instance(i + 1).value(attIndex)) / 2.0;
                currentEntropy = ContingencyTables.entropyConditionedOnRows(counts);
                if (currentEntropy < bestEntropy) {
                    bestCutPoint = currentCutPoint;
                    bestEntropy = currentEntropy;
                    bestIndex = i;
                    System.arraycopy(counts[0], 0, bestCounts[0], 0, instances.numClasses());
                    System.arraycopy(counts[1], 0, bestCounts[1], 0, instances.numClasses());
                }
                numCutPoints++;
            }
        }

        // Use worse encoding?
        if (!m_UseBetterEncoding) {
            numCutPoints = (lastPlusOne - first) - 1;
        }

        // Checks if gain is zero
        gain = priorEntropy - bestEntropy;
        if (gain <= 0) {
            return null;
        }

        // Check if split is to be accepted
        if ((m_UseKononenko && KononenkosMDL(priorCounts, bestCounts, numInstances, numCutPoints))
                || (!m_UseKononenko && FayyadAndIranisMDL(priorCounts, bestCounts, numInstances, numCutPoints))) {

            // Select split points for the left and right subsets
            left = cutPointsForSubset(instances, attIndex, first, bestIndex + 1);
            right = cutPointsForSubset(instances, attIndex, bestIndex + 1, lastPlusOne);

            // Merge cutpoints and return them
            if ((left == null) && (right) == null) {
                cutPoints = new double[1];
                cutPoints[0] = bestCutPoint;
            } else if (right == null) {
                cutPoints = new double[left.length + 1];
                System.arraycopy(left, 0, cutPoints, 0, left.length);
                cutPoints[left.length] = bestCutPoint;
            } else if (left == null) {
                cutPoints = new double[1 + right.length];
                cutPoints[0] = bestCutPoint;
                System.arraycopy(right, 0, cutPoints, 1, right.length);
            } else {
                cutPoints = new double[left.length + right.length + 1];
                System.arraycopy(left, 0, cutPoints, 0, left.length);
                cutPoints[left.length] = bestCutPoint;
                System.arraycopy(right, 0, cutPoints, left.length + 1, right.length);
            }

            return cutPoints;
        } else {
            return null;
        }
    }

    /**
     * Set the output format. Takes the currently defined cutpoints and
     * m_InputFormat and calls setOutputFormat(Instances) appropriately.
     */
    protected void setOutputFormat() {

        if (m_CutPoints == null) {
            setOutputFormat(null);
            return;
        }
        ArrayList<Attribute> attributes = new ArrayList<Attribute>(getInputFormat().numAttributes());
        int classIndex = getInputFormat().classIndex();
        for (int i = 0, m = getInputFormat().numAttributes(); i < m; ++i) {
            if ((m_DiscretizeCols.isInRange(i)) && (getInputFormat().attribute(i).isNumeric())) {

                Set<String> cutPointsCheck = new HashSet<String>();
                double[] cutPoints = m_CutPoints[i];
                if (!m_MakeBinary) {
                    ArrayList<String> attribValues;
                    if (cutPoints == null) {
                        attribValues = new ArrayList<String>(1);
                        attribValues.add("'All'");
                    } else {
                        attribValues = new ArrayList<String>(cutPoints.length + 1);
                        if (m_UseBinNumbers) {
                            for (int j = 0, n = cutPoints.length; j <= n; ++j) {
                                attribValues.add("'B" + (j + 1) + "of" + (n + 1) + "'");
                            }
                        } else {
                            for (int j = 0, n = cutPoints.length; j <= n; ++j) {
                                String newBinRangeString = binRangeString(cutPoints, j, m_BinRangePrecision);
                                if (!cutPointsCheck.add(newBinRangeString)) {
                                    throw new IllegalArgumentException(
                                            "A duplicate bin range was detected. Try increasing the bin range precision.");
                                }
                                attribValues.add("'" + newBinRangeString + "'");
                            }
                        }
                    }
                    Attribute newAtt = new Attribute(getInputFormat().attribute(i).name(), attribValues);
                    newAtt.setWeight(getInputFormat().attribute(i).weight());
                    attributes.add(newAtt);
                } else {
                    if (cutPoints == null) {
                        ArrayList<String> attribValues = new ArrayList<String>(1);
                        attribValues.add("'All'");
                        Attribute newAtt = new Attribute(getInputFormat().attribute(i).name(), attribValues);
                        newAtt.setWeight(getInputFormat().attribute(i).weight());
                        attributes.add(newAtt);
                    } else {
                        if (i < getInputFormat().classIndex()) {
                            classIndex += cutPoints.length - 1;
                        }
                        for (int j = 0, n = cutPoints.length; j < n; ++j) {
                            ArrayList<String> attribValues = new ArrayList<String>(2);
                            if (m_UseBinNumbers) {
                                attribValues.add("'B1of2'");
                                attribValues.add("'B2of2'");
                            } else {
                                double[] binaryCutPoint = { cutPoints[j] };
                                String newBinRangeString1 = binRangeString(binaryCutPoint, 0, m_BinRangePrecision);
                                String newBinRangeString2 = binRangeString(binaryCutPoint, 1, m_BinRangePrecision);
                                if (newBinRangeString1.equals(newBinRangeString2)) {
                                    throw new IllegalArgumentException(
                                            "A duplicate bin range was detected. Try increasing the bin range precision.");
                                }
                                attribValues.add("'" + newBinRangeString1 + "'");
                                attribValues.add("'" + newBinRangeString2 + "'");
                            }
                            Attribute newAtt = new Attribute(getInputFormat().attribute(i).name() + "_" + (j + 1),
                                    attribValues);
                            if (getSpreadAttributeWeight()) {
                                newAtt.setWeight(getInputFormat().attribute(i).weight() / cutPoints.length);
                            } else {
                                newAtt.setWeight(getInputFormat().attribute(i).weight());
                            }
                            attributes.add(newAtt);
                        }
                    }
                }
            } else {
                attributes.add((Attribute) getInputFormat().attribute(i).copy());
            }
        }
        Instances outputFormat = new Instances(getInputFormat().relationName(), attributes, 0);
        outputFormat.setClassIndex(classIndex);
        setOutputFormat(outputFormat);
    }

    /**
     * Convert a single instance over. The converted instance is added to the end
     * of the output queue.
     * 
     * @param instance the instance to convert
     */
    protected void convertInstance(Instance instance) {

        int index = 0;
        double[] vals = new double[outputFormatPeek().numAttributes()];
        // Copy and convert the values
        for (int i = 0; i < getInputFormat().numAttributes(); i++) {
            if (m_DiscretizeCols.isInRange(i) && getInputFormat().attribute(i).isNumeric()) {
                int j;
                double currentVal = instance.value(i);
                if (m_CutPoints[i] == null) {
                    if (instance.isMissing(i)) {
                        vals[index] = Utils.missingValue();
                    } else {
                        vals[index] = 0;
                    }
                    index++;
                } else {
                    if (!m_MakeBinary) {
                        if (instance.isMissing(i)) {
                            vals[index] = Utils.missingValue();
                        } else {
                            for (j = 0; j < m_CutPoints[i].length; j++) {
                                if (currentVal <= m_CutPoints[i][j]) {
                                    break;
                                }
                            }
                            vals[index] = j;
                        }
                        index++;
                    } else {
                        for (j = 0; j < m_CutPoints[i].length; j++) {
                            if (instance.isMissing(i)) {
                                vals[index] = Utils.missingValue();
                            } else if (currentVal <= m_CutPoints[i][j]) {
                                vals[index] = 0;
                            } else {
                                vals[index] = 1;
                            }
                            index++;
                        }
                    }
                }
            } else {
                vals[index] = instance.value(i);
                index++;
            }
        }

        Instance inst = null;
        if (instance instanceof SparseInstance) {
            inst = new SparseInstance(instance.weight(), vals);
        } else {
            inst = new DenseInstance(instance.weight(), vals);
        }

        copyValues(inst, false, instance.dataset(), outputFormatPeek());

        push(inst); // No need to copy instance
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv should contain arguments to the filter: use -h for help
     */
    public static void main(String[] argv) {
        runFilter(new Discretize(), argv);
    }
}