Java tutorial
package edu.columbia.cs.ltrie.sampling.queries.generation; /* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ChiSquaredAttributeEval.java * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand * */ import weka.attributeSelection.ASEvaluation; import weka.attributeSelection.AttributeEvaluator; import weka.core.Capabilities; import weka.core.ContingencyTables; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import weka.core.Capabilities.Capability; import weka.filters.Filter; import weka.filters.supervised.attribute.Discretize; import weka.filters.unsupervised.attribute.NumericToBinary; import java.util.Enumeration; import java.util.Vector; /** <!-- globalinfo-start --> * ChiSquaredWithYatesCorrectionAttributeEval :<br/> * <br/> * Evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class.<br/> * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M * treat missing values as a seperate value.</pre> * * <pre> -B * just binarize numeric attributes instead * of properly discretizing them.</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 5511 $ * @see Discretize * @see NumericToBinary */ public class ChiSquaredWithYatesCorrectionAttributeEval extends ASEvaluation implements AttributeEvaluator, OptionHandler { /** for serialization */ static final long serialVersionUID = -8316857822521717692L; private static final double EXPECTED = 5.0; /** Treat missing values as a seperate value */ private boolean m_missing_merge; /** Just binarize numeric attributes */ private boolean m_Binarize; /** The chi-squared value for each attribute */ private double[] m_ChiSquareds; /** * Returns a string describing this attribute evaluator * @return a description of the evaluator suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "ChiSquaredAttributeEval :\n\nEvaluates the worth of an attribute " + "by computing the value of the chi-squared statistic with respect to the class.\n"; } /** * Constructor */ public ChiSquaredWithYatesCorrectionAttributeEval() { resetOptions(); } /** * Returns an enumeration describing the available options * @return an enumeration of all the available options **/ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option("\ttreat missing values as a seperate " + "value.", "M", 0, "-M")); newVector.addElement( new Option("\tjust binarize numeric attributes instead \n" + "\tof properly discretizing them.", "B", 0, "-B")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M * treat missing values as a seperate value.</pre> * * <pre> -B * just binarize numeric attributes instead * of properly discretizing them.</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { resetOptions(); setMissingMerge(!(Utils.getFlag('M', options))); setBinarizeNumericAttributes(Utils.getFlag('B', options)); } /** * Gets the current settings. * * @return an array of strings suitable for passing to setOptions() */ public String[] getOptions() { String[] options = new String[2]; int current = 0; if (!getMissingMerge()) { options[current++] = "-M"; } if (getBinarizeNumericAttributes()) { options[current++] = "-B"; } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binarizeNumericAttributesTipText() { return "Just binarize numeric attributes instead of properly discretizing them."; } /** * Binarize numeric attributes. * * @param b true=binarize numeric attributes */ public void setBinarizeNumericAttributes(boolean b) { m_Binarize = b; } /** * get whether numeric attributes are just being binarized. * * @return true if missing values are being distributed. */ public boolean getBinarizeNumericAttributes() { return m_Binarize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String missingMergeTipText() { return "Distribute counts for missing values. Counts are distributed " + "across other values in proportion to their frequency. Otherwise, " + "missing is treated as a separate value."; } /** * distribute the counts for missing values across observed values * * @param b true=distribute missing values. */ public void setMissingMerge(boolean b) { m_missing_merge = b; } /** * get whether missing values are being distributed or not * * @return true if missing values are being distributed. */ public boolean getMissingMerge() { return m_missing_merge; } /** * Returns the capabilities of this evaluator. * * @return the capabilities of this evaluator * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Initializes a chi-squared attribute evaluator. * Discretizes all attributes that are numeric. * * @param data set of instances serving as training data * @throws Exception if the evaluator has not been * generated successfully */ public void buildEvaluator(Instances data) throws Exception { // can evaluator handle data? getCapabilities().testWithFail(data); int classIndex = data.classIndex(); int numInstances = data.numInstances(); if (!m_Binarize) { Discretize disTransform = new Discretize(); disTransform.setUseBetterEncoding(true); disTransform.setInputFormat(data); data = Filter.useFilter(data, disTransform); } else { NumericToBinary binTransform = new NumericToBinary(); binTransform.setInputFormat(data); data = Filter.useFilter(data, binTransform); } int numClasses = data.attribute(classIndex).numValues(); // Reserve space and initialize counters double[][][] counts = new double[data.numAttributes()][][]; for (int k = 0; k < data.numAttributes(); k++) { if (k != classIndex) { int numValues = data.attribute(k).numValues(); counts[k] = new double[numValues + 1][numClasses + 1]; } } // Initialize counters double[] temp = new double[numClasses + 1]; for (int k = 0; k < numInstances; k++) { Instance inst = data.instance(k); if (inst.classIsMissing()) { temp[numClasses] += inst.weight(); } else { temp[(int) inst.classValue()] += inst.weight(); } } for (int k = 0; k < counts.length; k++) { if (k != classIndex) { for (int i = 0; i < temp.length; i++) { counts[k][0][i] = temp[i]; } } } // Get counts for (int k = 0; k < numInstances; k++) { Instance inst = data.instance(k); for (int i = 0; i < inst.numValues(); i++) { if (inst.index(i) != classIndex) { if (inst.isMissingSparse(i) || inst.classIsMissing()) { if (!inst.isMissingSparse(i)) { counts[inst.index(i)][(int) inst.valueSparse(i)][numClasses] += inst.weight(); counts[inst.index(i)][0][numClasses] -= inst.weight(); } else if (!inst.classIsMissing()) { counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][(int) inst .classValue()] += inst.weight(); counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight(); } else { counts[inst.index(i)][data.attribute(inst.index(i)).numValues()][numClasses] += inst .weight(); counts[inst.index(i)][0][numClasses] -= inst.weight(); } } else { counts[inst.index(i)][(int) inst.valueSparse(i)][(int) inst.classValue()] += inst.weight(); counts[inst.index(i)][0][(int) inst.classValue()] -= inst.weight(); } } } } // distribute missing counts if required if (m_missing_merge) { for (int k = 0; k < data.numAttributes(); k++) { if (k != classIndex) { int numValues = data.attribute(k).numValues(); // Compute marginals double[] rowSums = new double[numValues]; double[] columnSums = new double[numClasses]; double sum = 0; for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { rowSums[i] += counts[k][i][j]; columnSums[j] += counts[k][i][j]; } sum += rowSums[i]; } if (Utils.gr(sum, 0)) { double[][] additions = new double[numValues][numClasses]; // Compute what needs to be added to each row for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { additions[i][j] = (rowSums[i] / sum) * counts[k][numValues][j]; } } // Compute what needs to be added to each column for (int i = 0; i < numClasses; i++) { for (int j = 0; j < numValues; j++) { additions[j][i] += (columnSums[i] / sum) * counts[k][j][numClasses]; } } // Compute what needs to be added to each cell for (int i = 0; i < numClasses; i++) { for (int j = 0; j < numValues; j++) { additions[j][i] += (counts[k][j][i] / sum) * counts[k][numValues][numClasses]; } } // Make new contingency table double[][] newTable = new double[numValues][numClasses]; for (int i = 0; i < numValues; i++) { for (int j = 0; j < numClasses; j++) { newTable[i][j] = counts[k][i][j] + additions[i][j]; } } counts[k] = newTable; } } } } // Compute chi-squared values m_ChiSquareds = new double[data.numAttributes()]; for (int i = 0; i < data.numAttributes(); i++) { if (i != classIndex) { m_ChiSquareds[i] = chiVal(ContingencyTables.reduceMatrix(counts[i])); } } } /** * Computes chi-squared statistic for a contingency table. * * @param matrix the contigency table * @param useYates is Yates' correction to be used? * @return the value of the chi-squared statistic */ public static double chiVal(double[][] matrix) { int df, nrows, ncols, row, col; double[] rtotal, ctotal; double expect = 0, chival = 0, n = 0; boolean yates = true; nrows = matrix.length; ncols = matrix[0].length; rtotal = new double[nrows]; ctotal = new double[ncols]; for (row = 0; row < nrows; row++) { for (col = 0; col < ncols; col++) { rtotal[row] += matrix[row][col]; ctotal[col] += matrix[row][col]; n += matrix[row][col]; } } df = (nrows - 1) * (ncols - 1); chival = 0.0; for (row = 0; row < nrows; row++) { if (Utils.gr(rtotal[row], 0)) { for (col = 0; col < ncols; col++) { if (Utils.gr(ctotal[col], 0)) { expect = (ctotal[col] * rtotal[row]) / n; if ((df >= 1) && expect > EXPECTED) { yates = false; } else if (df <= 0) { return 0; } else if ((df <= 1) && (expect <= EXPECTED)) { yates = true; } chival += chiCell(matrix[row][col], expect, yates); } } } } return chival; } private static double chiCell(double freq, double expected, boolean yates) { // Cell in empty row and column? if (Utils.smOrEq(expected, 0)) { return 0; } // Compute difference between observed and expected value double diff = Math.abs(freq - expected); if (yates) { // Apply Yates' correction if wanted diff -= 0.5; // The difference should never be negative if (diff < 0) { diff = 0; } } // Return chi-value for the cell return (diff * diff / expected); } /** * Reset options to their default values */ protected void resetOptions() { m_ChiSquareds = null; m_missing_merge = true; m_Binarize = false; } /** * evaluates an individual attribute by measuring its * chi-squared value. * * @param attribute the index of the attribute to be evaluated * @return the chi-squared value * @throws Exception if the attribute could not be evaluated */ public double evaluateAttribute(int attribute) throws Exception { return m_ChiSquareds[attribute]; } /** * Describe the attribute evaluator * @return a description of the attribute evaluator as a string */ public String toString() { StringBuffer text = new StringBuffer(); if (m_ChiSquareds == null) { text.append("Chi-squared attribute evaluator has not been built"); } else { text.append("\tChi-squared Ranking Filter"); if (!m_missing_merge) { text.append("\n\tMissing values treated as seperate"); } if (m_Binarize) { text.append("\n\tNumeric attributes are just binarized"); } } text.append("\n"); return text.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 5511 $"); } /** * Main method. * * @param args the options */ public static void main(String[] args) { runEvaluator(new ChiSquaredWithYatesCorrectionAttributeEval(), args); } }