Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * IncrementalClassifier.java * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand * */ package com.daniel.convert; import java.io.File; import java.util.Random; import weka.classifiers.Evaluation; import weka.classifiers.bayes.BayesNet; import weka.core.Instance; import weka.core.Instances; import weka.core.converters.ArffLoader; /** * This example trains NaiveBayes incrementally on data obtained from the * ArffLoader. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 5628 $ */ public class IncrementalClassifier { /** * Expects an ARFF file as first argument (class attribute is assumed to be * the last attribute). * * @param args * the commandline arguments * @throws Exception * if something goes wrong */ public static BayesNet treinar(String[] args) throws Exception { // load data ArffLoader loader = new ArffLoader(); loader.setFile(new File(args[0])); Instances structure = loader.getStructure(); structure.setClassIndex(structure.numAttributes() - 1); // train NaiveBayes BayesNet BayesNet = new BayesNet(); Instance current; while ((current = loader.getNextInstance(structure)) != null) { structure.add(current); } BayesNet.buildClassifier(structure); // output generated model // System.out.println(nb); // test set BayesNet BayesNetTest = new BayesNet(); // test the model Evaluation eTest = new Evaluation(structure); // eTest.evaluateModel(nb, structure); eTest.crossValidateModel(BayesNetTest, structure, 15, new Random(1)); // Print the result la Weka explorer: String strSummary = eTest.toSummaryString(); System.out.println(strSummary); return BayesNet; } }