weka.classifiers.bayes.BayesNet.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.bayes.BayesNet.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * BayesNet.java
 * Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand
 * 
 */
package weka.classifiers.bayes;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.bayes.net.ADNode;
import weka.classifiers.bayes.net.BIFReader;
import weka.classifiers.bayes.net.ParentSet;
import weka.classifiers.bayes.net.estimate.BayesNetEstimator;
import weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes;
import weka.classifiers.bayes.net.estimate.SimpleEstimator;
import weka.classifiers.bayes.net.search.SearchAlgorithm;
import weka.classifiers.bayes.net.search.local.K2;
import weka.classifiers.bayes.net.search.local.LocalScoreSearchAlgorithm;
import weka.classifiers.bayes.net.search.local.Scoreable;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.estimators.Estimator;
import weka.filters.Filter;
import weka.filters.supervised.attribute.Discretize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 * <!-- globalinfo-start --> Bayes Network learning using various search
 * algorithms and quality measures.<br/>
 * Base class for a Bayes Network classifier. Provides datastructures (network
 * structure, conditional probability distributions, etc.) and facilities common
 * to Bayes Network learning algorithms like K2 and B.<br/>
 * <br/>
 * For more information see:<br/>
 * <br/>
 * http://sourceforge.net/projects/weka/files/documentation/WekaManual-3-7-0.pdf
 * /download
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -D
 *  Do not use ADTree data structure
 * </pre>
 * 
 * <pre>
 * -B &lt;BIF file&gt;
 *  BIF file to compare with
 * </pre>
 * 
 * <pre>
 * -Q weka.classifiers.bayes.net.search.SearchAlgorithm
 *  Search algorithm
 * </pre>
 * 
 * <pre>
 * -E weka.classifiers.bayes.net.estimate.SimpleEstimator
 *  Estimator algorithm
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Remco Bouckaert (rrb@xm.co.nz)
 * @version $Revision$
 */
public class BayesNet extends AbstractClassifier
        implements OptionHandler, WeightedInstancesHandler, Drawable, AdditionalMeasureProducer {

    /** for serialization */
    static final long serialVersionUID = 746037443258775954L;

    /**
     * The parent sets.
     */
    protected ParentSet[] m_ParentSets;

    /**
     * The attribute estimators containing CPTs.
     */
    public Estimator[][] m_Distributions;

    /** filter used to quantize continuous variables, if any **/
    protected Discretize m_DiscretizeFilter = null;

    /** attribute index of a non-nominal attribute */
    int m_nNonDiscreteAttribute = -1;

    /** filter used to fill in missing values, if any **/
    protected ReplaceMissingValues m_MissingValuesFilter = null;

    /**
     * The number of classes
     */
    protected int m_NumClasses;

    /**
     * The dataset header for the purposes of printing out a semi-intelligible
     * model
     */
    public Instances m_Instances;

    /**
     * The number of instances the model was built from
     */
    private int m_NumInstances;

    /**
     * Datastructure containing ADTree representation of the database. This may
     * result in more efficient access to the data.
     */
    ADNode m_ADTree;

    /**
     * Bayes network to compare the structure with.
     */
    protected BIFReader m_otherBayesNet = null;

    /**
     * Use the experimental ADTree datastructure for calculating contingency
     * tables
     */
    boolean m_bUseADTree = false;

    /**
     * Search algorithm used for learning the structure of a network.
     */
    SearchAlgorithm m_SearchAlgorithm = new K2();

    /**
     * Search algorithm used for learning the structure of a network.
     */
    BayesNetEstimator m_BayesNetEstimator = new SimpleEstimator();

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        // instances
        result.setMinimumNumberInstances(0);

        return result;
    }

    /**
     * Generates the classifier.
     * 
     * @param instances set of instances serving as training data
     * @throws Exception if the classifier has not been generated successfully
     */
    @Override
    public void buildClassifier(Instances instances) throws Exception {

        // can classifier handle the data?
        getCapabilities().testWithFail(instances);

        // remove instances with missing class
        instances = new Instances(instances);
        instances.deleteWithMissingClass();

        // ensure we have a data set with discrete variables only and with no
        // missing values
        instances = normalizeDataSet(instances);

        // Copy the instances
        m_Instances = new Instances(instances);
        m_NumInstances = m_Instances.numInstances();

        // sanity check: need more than 1 variable in datat set
        m_NumClasses = instances.numClasses();

        // initialize ADTree
        if (m_bUseADTree) {
            m_ADTree = ADNode.makeADTree(instances);
            // System.out.println("Oef, done!");
        }

        // build the network structure
        initStructure();

        // build the network structure
        buildStructure();

        // build the set of CPTs
        estimateCPTs();

        // Save space
        m_Instances = new Instances(m_Instances, 0);
        m_ADTree = null;
    } // buildClassifier

    /**
     * Returns the number of instances the model was built from.
     */
    public int getNumInstances() {

        return m_NumInstances;
    }

    /**
     * ensure that all variables are nominal and that there are no missing values
     * 
     * @param instances data set to check and quantize and/or fill in missing
     *          values
     * @return filtered instances
     * @throws Exception if a filter (Discretize, ReplaceMissingValues) fails
     */
    protected Instances normalizeDataSet(Instances instances) throws Exception {

        m_nNonDiscreteAttribute = -1;
        Enumeration<Attribute> enu = instances.enumerateAttributes();
        while (enu.hasMoreElements()) {
            Attribute attribute = enu.nextElement();
            if (attribute.type() != Attribute.NOMINAL) {
                m_nNonDiscreteAttribute = attribute.index();
            }
        }

        if ((m_nNonDiscreteAttribute > -1)
                && (instances.attribute(m_nNonDiscreteAttribute).type() != Attribute.NOMINAL)) {
            m_DiscretizeFilter = new Discretize();
            m_DiscretizeFilter.setInputFormat(instances);
            instances = Filter.useFilter(instances, m_DiscretizeFilter);
        }

        m_MissingValuesFilter = new ReplaceMissingValues();
        m_MissingValuesFilter.setInputFormat(instances);
        instances = Filter.useFilter(instances, m_MissingValuesFilter);

        return instances;
    } // normalizeDataSet

    /**
     * ensure that all variables are nominal and that there are no missing values
     * 
     * @param instance instance to check and quantize and/or fill in missing
     *          values
     * @return filtered instance
     * @throws Exception if a filter (Discretize, ReplaceMissingValues) fails
     */
    protected Instance normalizeInstance(Instance instance) throws Exception {
        if ((m_nNonDiscreteAttribute > -1)
                && (instance.attribute(m_nNonDiscreteAttribute).type() != Attribute.NOMINAL)) {
            m_DiscretizeFilter.input(instance);
            instance = m_DiscretizeFilter.output();
        }

        m_MissingValuesFilter.input(instance);
        instance = m_MissingValuesFilter.output();

        return instance;
    } // normalizeInstance

    /**
     * Init structure initializes the structure to an empty graph or a Naive Bayes
     * graph (depending on the -N flag).
     * 
     * @throws Exception in case of an error
     */
    public void initStructure() throws Exception {

        // initialize topological ordering
        // m_nOrder = new int[m_Instances.numAttributes()];
        // m_nOrder[0] = m_Instances.classIndex();

        int nAttribute = 0;

        for (int iOrder = 1; iOrder < m_Instances.numAttributes(); iOrder++) {
            if (nAttribute == m_Instances.classIndex()) {
                nAttribute++;
            }

            // m_nOrder[iOrder] = nAttribute++;
        }

        // reserve memory
        m_ParentSets = new ParentSet[m_Instances.numAttributes()];

        for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
            m_ParentSets[iAttribute] = new ParentSet(m_Instances.numAttributes());
        }
    } // initStructure

    /**
     * buildStructure determines the network structure/graph of the network. The
     * default behavior is creating a network where all nodes have the first node
     * as its parent (i.e., a BayesNet that behaves like a naive Bayes
     * classifier). This method can be overridden by derived classes to restrict
     * the class of network structures that are acceptable.
     * 
     * @throws Exception in case of an error
     */
    public void buildStructure() throws Exception {
        m_SearchAlgorithm.buildStructure(this, m_Instances);
    } // buildStructure

    /**
     * estimateCPTs estimates the conditional probability tables for the Bayes Net
     * using the network structure.
     * 
     * @throws Exception in case of an error
     */
    public void estimateCPTs() throws Exception {
        m_BayesNetEstimator.estimateCPTs(this);
    } // estimateCPTs

    /**
     * initializes the conditional probabilities
     * 
     * @throws Exception in case of an error
     */
    public void initCPTs() throws Exception {
        m_BayesNetEstimator.initCPTs(this);
    } // estimateCPTs

    /**
     * Updates the classifier with the given instance.
     * 
     * @param instance the new training instance to include in the model
     * @throws Exception if the instance could not be incorporated in the model.
     */
    public void updateClassifier(Instance instance) throws Exception {
        instance = normalizeInstance(instance);
        m_BayesNetEstimator.updateClassifier(this, instance);
    } // updateClassifier

    /**
     * Calculates the class membership probabilities for the given test instance.
     * 
     * @param instance the instance to be classified
     * @return predicted class probability distribution
     * @throws Exception if there is a problem generating the prediction
     */
    @Override
    public double[] distributionForInstance(Instance instance) throws Exception {
        instance = normalizeInstance(instance);
        return m_BayesNetEstimator.distributionForInstance(this, instance);
    } // distributionForInstance

    /**
     * Calculates the counts for Dirichlet distribution for the class membership
     * probabilities for the given test instance.
     * 
     * @param instance the instance to be classified
     * @return counts for Dirichlet distribution for class probability
     * @throws Exception if there is a problem generating the prediction
     */
    public double[] countsForInstance(Instance instance) throws Exception {
        double[] fCounts = new double[m_NumClasses];

        for (int iClass = 0; iClass < m_NumClasses; iClass++) {
            fCounts[iClass] = 0.0;
        }

        for (int iClass = 0; iClass < m_NumClasses; iClass++) {
            double fCount = 0;

            for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
                double iCPT = 0;

                for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) {
                    int nParent = m_ParentSets[iAttribute].getParent(iParent);

                    if (nParent == m_Instances.classIndex()) {
                        iCPT = iCPT * m_NumClasses + iClass;
                    } else {
                        iCPT = iCPT * m_Instances.attribute(nParent).numValues() + instance.value(nParent);
                    }
                }

                if (iAttribute == m_Instances.classIndex()) {
                    fCount += ((DiscreteEstimatorBayes) m_Distributions[iAttribute][(int) iCPT]).getCount(iClass);
                } else {
                    fCount += ((DiscreteEstimatorBayes) m_Distributions[iAttribute][(int) iCPT])
                            .getCount(instance.value(iAttribute));
                }
            }

            fCounts[iClass] += fCount;
        }
        return fCounts;
    } // countsForInstance

    /**
     * Returns an enumeration describing the available options
     * 
     * @return an enumeration of all the available options
     */
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(4);

        newVector.addElement(new Option("\tDo not use ADTree data structure\n", "D", 0, "-D"));
        newVector.addElement(new Option("\tBIF file to compare with\n", "B", 1, "-B <BIF file>"));
        newVector.addElement(
                new Option("\tSearch algorithm\n", "Q", 1, "-Q weka.classifiers.bayes.net.search.SearchAlgorithm"));
        newVector.addElement(new Option("\tEstimator algorithm\n", "E", 1,
                "-E weka.classifiers.bayes.net.estimate.SimpleEstimator"));
        newVector.addAll(Collections.list(super.listOptions()));

        newVector.addElement(new Option("", "", 0,
                "\nOptions specific to search method " + getSearchAlgorithm().getClass().getName() + ":"));
        newVector.addAll(Collections.list(getSearchAlgorithm().listOptions()));

        newVector.addElement(new Option("", "", 0,
                "\nOptions specific to estimator method " + getEstimator().getClass().getName() + ":"));
        newVector.addAll(Collections.list(getEstimator().listOptions()));

        return newVector.elements();
    } // listOptions

    /**
     * Parses a given list of options.
     * <p>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -D
     *  Do not use ADTree data structure
     * </pre>
     * 
     * <pre>
     * -B &lt;BIF file&gt;
     *  BIF file to compare with
     * </pre>
     * 
     * <pre>
     * -Q weka.classifiers.bayes.net.search.SearchAlgorithm
     *  Search algorithm
     * </pre>
     * 
     * <pre>
     * -E weka.classifiers.bayes.net.estimate.SimpleEstimator
     *  Estimator algorithm
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        super.setOptions(options);
        m_bUseADTree = !(Utils.getFlag('D', options));

        String sBIFFile = Utils.getOption('B', options);
        if (sBIFFile != null && !sBIFFile.equals("")) {
            setBIFFile(sBIFFile);
        }

        String searchAlgorithmName = Utils.getOption('Q', options);
        if (searchAlgorithmName.length() != 0) {
            setSearchAlgorithm((SearchAlgorithm) Utils.forName(SearchAlgorithm.class, searchAlgorithmName,
                    partitionOptions(options)));
        } else {
            setSearchAlgorithm(new K2());
        }

        String estimatorName = Utils.getOption('E', options);
        if (estimatorName.length() != 0) {
            setEstimator((BayesNetEstimator) Utils.forName(BayesNetEstimator.class, estimatorName,
                    Utils.partitionOptions(options)));
        } else {
            setEstimator(new SimpleEstimator());
        }

        Utils.checkForRemainingOptions(options);
    } // setOptions

    /**
     * Returns the secondary set of options (if any) contained in the supplied
     * options array. The secondary set is defined to be any options after the
     * first "--" but before the "-E". These options are removed from the original
     * options array.
     * 
     * @param options the input array of options
     * @return the array of secondary options
     */
    public static String[] partitionOptions(String[] options) {

        for (int i = 0; i < options.length; i++) {
            if (options[i].equals("--")) {
                // ensure it follows by a -E option
                int j = i;
                while ((j < options.length) && !(options[j].equals("-E"))) {
                    j++;
                }
                /*
                 * if (j >= options.length) { return new String[0]; }
                 */
                options[i++] = "";
                String[] result = new String[options.length - i];
                j = i;
                while ((j < options.length) && !(options[j].equals("-E"))) {
                    result[j - i] = options[j];
                    options[j] = "";
                    j++;
                }
                while (j < options.length) {
                    result[j - i] = "";
                    j++;
                }
                return result;
            }
        }
        return new String[0];
    }

    /**
     * Gets the current settings of the classifier.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {
        Vector<String> options = new Vector<String>();

        Collections.addAll(options, super.getOptions());

        if (!m_bUseADTree) {
            options.add("-D");
        }

        if (m_otherBayesNet != null) {
            options.add("-B");
            options.add(m_otherBayesNet.getFileName());
        }

        options.add("-Q");
        options.add("" + getSearchAlgorithm().getClass().getName());
        options.add("--");
        Collections.addAll(options, getSearchAlgorithm().getOptions());

        options.add("-E");
        options.add("" + getEstimator().getClass().getName());
        options.add("--");
        Collections.addAll(options, getEstimator().getOptions());

        return options.toArray(new String[0]);
    } // getOptions

    /**
     * Set the SearchAlgorithm used in searching for network structures.
     * 
     * @param newSearchAlgorithm the SearchAlgorithm to use.
     */
    public void setSearchAlgorithm(SearchAlgorithm newSearchAlgorithm) {
        m_SearchAlgorithm = newSearchAlgorithm;
    }

    /**
     * Get the SearchAlgorithm used as the search algorithm
     * 
     * @return the SearchAlgorithm used as the search algorithm
     */
    public SearchAlgorithm getSearchAlgorithm() {
        return m_SearchAlgorithm;
    }

    /**
     * Set the Estimator Algorithm used in calculating the CPTs
     * 
     * @param newBayesNetEstimator the Estimator to use.
     */
    public void setEstimator(BayesNetEstimator newBayesNetEstimator) {
        m_BayesNetEstimator = newBayesNetEstimator;
    }

    /**
     * Get the BayesNetEstimator used for calculating the CPTs
     * 
     * @return the BayesNetEstimator used.
     */
    public BayesNetEstimator getEstimator() {
        return m_BayesNetEstimator;
    }

    /**
     * Set whether ADTree structure is used or not
     * 
     * @param bUseADTree true if an ADTree structure is used
     */
    public void setUseADTree(boolean bUseADTree) {
        m_bUseADTree = bUseADTree;
    }

    /**
     * Method declaration
     * 
     * @return whether ADTree structure is used or not
     */
    public boolean getUseADTree() {
        return m_bUseADTree;
    }

    /**
     * Set name of network in BIF file to compare with
     * 
     * @param sBIFFile the name of the BIF file
     */
    public void setBIFFile(String sBIFFile) {
        try {
            m_otherBayesNet = new BIFReader().processFile(sBIFFile);
        } catch (Throwable t) {
            m_otherBayesNet = null;
        }
    }

    /**
     * Get name of network in BIF file to compare with
     * 
     * @return BIF file name
     */
    public String getBIFFile() {
        if (m_otherBayesNet != null) {
            return m_otherBayesNet.getFileName();
        }
        return "";
    }

    /**
     * Returns a description of the classifier.
     * 
     * @return a description of the classifier as a string.
     */
    @Override
    public String toString() {
        StringBuffer text = new StringBuffer();

        text.append("Bayes Network Classifier");
        text.append("\n" + (m_bUseADTree ? "Using " : "not using ") + "ADTree");

        if (m_Instances == null) {
            text.append(": No model built yet.");
        } else {

            // flatten BayesNet down to text
            text.append("\n#attributes=");
            text.append(m_Instances.numAttributes());
            text.append(" #classindex=");
            text.append(m_Instances.classIndex());
            text.append("\nNetwork structure (nodes followed by parents)\n");

            for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
                text.append(m_Instances.attribute(iAttribute).name() + "("
                        + m_Instances.attribute(iAttribute).numValues() + "): ");

                for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) {
                    text.append(m_Instances.attribute(m_ParentSets[iAttribute].getParent(iParent)).name() + " ");
                }

                text.append("\n");

                // Description of distributions tends to be too much detail, so it is
                // commented out here
                // for (int iParent = 0; iParent <
                // m_ParentSets[iAttribute].GetCardinalityOfParents(); iParent++) {
                // text.append('(' + m_Distributions[iAttribute][iParent].toString() +
                // ')');
                // }
                // text.append("\n");
            }

            text.append("LogScore Bayes: " + measureBayesScore() + "\n");
            text.append("LogScore BDeu: " + measureBDeuScore() + "\n");
            text.append("LogScore MDL: " + measureMDLScore() + "\n");
            text.append("LogScore ENTROPY: " + measureEntropyScore() + "\n");
            text.append("LogScore AIC: " + measureAICScore() + "\n");

            if (m_otherBayesNet != null) {
                text.append("Missing: " + m_otherBayesNet.missingArcs(this) + " Extra: "
                        + m_otherBayesNet.extraArcs(this) + " Reversed: " + m_otherBayesNet.reversedArcs(this)
                        + "\n");
                text.append("Divergence: " + m_otherBayesNet.divergence(this) + "\n");
            }
        }

        return text.toString();
    } // toString

    /**
     * Returns the type of graph this classifier represents.
     * 
     * @return Drawable.TREE
     */
    @Override
    public int graphType() {
        return Drawable.BayesNet;
    }

    /**
     * Returns a BayesNet graph in XMLBIF ver 0.3 format.
     * 
     * @return String representing this BayesNet in XMLBIF ver 0.3
     * @throws Exception in case BIF generation fails
     */
    @Override
    public String graph() throws Exception {
        return toXMLBIF03();
    }

    public String getBIFHeader() {
        StringBuffer text = new StringBuffer();
        text.append("<?xml version=\"1.0\"?>\n");
        text.append("<!-- DTD for the XMLBIF 0.3 format -->\n");
        text.append("<!DOCTYPE BIF [\n");
        text.append("   <!ELEMENT BIF ( NETWORK )*>\n");
        text.append("         <!ATTLIST BIF VERSION CDATA #REQUIRED>\n");
        text.append("   <!ELEMENT NETWORK ( NAME, ( PROPERTY | VARIABLE | DEFINITION )* )>\n");
        text.append("   <!ELEMENT NAME (#PCDATA)>\n");
        text.append("   <!ELEMENT VARIABLE ( NAME, ( OUTCOME |  PROPERTY )* ) >\n");
        text.append("         <!ATTLIST VARIABLE TYPE (nature|decision|utility) \"nature\">\n");
        text.append("   <!ELEMENT OUTCOME (#PCDATA)>\n");
        text.append("   <!ELEMENT DEFINITION ( FOR | GIVEN | TABLE | PROPERTY )* >\n");
        text.append("   <!ELEMENT FOR (#PCDATA)>\n");
        text.append("   <!ELEMENT GIVEN (#PCDATA)>\n");
        text.append("   <!ELEMENT TABLE (#PCDATA)>\n");
        text.append("   <!ELEMENT PROPERTY (#PCDATA)>\n");
        text.append("]>\n");
        return text.toString();
    } // getBIFHeader

    /**
     * Returns a description of the classifier in XML BIF 0.3 format. See
     * http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/ for details
     * on XML BIF.
     * 
     * @return an XML BIF 0.3 description of the classifier as a string.
     */
    public String toXMLBIF03() {
        if (m_Instances == null) {
            return ("<!--No model built yet-->");
        }

        StringBuffer text = new StringBuffer();
        text.append(getBIFHeader());
        text.append("\n");
        text.append("\n");
        text.append("<BIF VERSION=\"0.3\">\n");
        text.append("<NETWORK>\n");
        text.append("<NAME>" + XMLNormalize(Utils.quote(m_Instances.relationName())) + "</NAME>\n");
        for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
            text.append("<VARIABLE TYPE=\"nature\">\n");
            text.append(
                    "<NAME>" + XMLNormalize(Utils.quote(m_Instances.attribute(iAttribute).name())) + "</NAME>\n");
            for (int iValue = 0; iValue < m_Instances.attribute(iAttribute).numValues(); iValue++) {
                text.append("<OUTCOME>" + XMLNormalize(Utils.quote(m_Instances.attribute(iAttribute).value(iValue)))
                        + "</OUTCOME>\n");
            }
            text.append("</VARIABLE>\n");
        }

        for (int iAttribute = 0; iAttribute < m_Instances.numAttributes(); iAttribute++) {
            text.append("<DEFINITION>\n");
            text.append("<FOR>" + XMLNormalize(Utils.quote(m_Instances.attribute(iAttribute).name())) + "</FOR>\n");
            for (int iParent = 0; iParent < m_ParentSets[iAttribute].getNrOfParents(); iParent++) {
                text.append("<GIVEN>"
                        + XMLNormalize(Utils
                                .quote(m_Instances.attribute(m_ParentSets[iAttribute].getParent(iParent)).name()))
                        + "</GIVEN>\n");
            }
            text.append("<TABLE>\n");
            for (int iParent = 0; iParent < m_ParentSets[iAttribute].getCardinalityOfParents(); iParent++) {
                for (int iValue = 0; iValue < m_Instances.attribute(iAttribute).numValues(); iValue++) {
                    text.append(m_Distributions[iAttribute][iParent].getProbability(iValue));
                    text.append(' ');
                }
                text.append('\n');
            }
            text.append("</TABLE>\n");
            text.append("</DEFINITION>\n");
        }
        text.append("</NETWORK>\n");
        text.append("</BIF>\n");
        return text.toString();
    } // toXMLBIF03

    /**
     * XMLNormalize converts the five standard XML entities in a string g.e. the
     * string V&D's is returned as V&amp;D&apos;s
     * 
     * @param sStr string to normalize
     * @return normalized string
     */
    protected String XMLNormalize(String sStr) {
        StringBuffer sStr2 = new StringBuffer();
        for (int iStr = 0; iStr < sStr.length(); iStr++) {
            char c = sStr.charAt(iStr);
            switch (c) {
            case '&':
                sStr2.append("&amp;");
                break;
            case '\'':
                sStr2.append("&apos;");
                break;
            case '\"':
                sStr2.append("&quot;");
                break;
            case '<':
                sStr2.append("&lt;");
                break;
            case '>':
                sStr2.append("&gt;");
                break;
            default:
                sStr2.append(c);
            }
        }
        return sStr2.toString();
    } // XMLNormalize

    /**
     * @return a string to describe the UseADTreeoption.
     */
    public String useADTreeTipText() {
        return "When ADTree (the data structure for increasing speed on counts,"
                + " not to be confused with the classifier under the same name) is used"
                + " learning time goes down typically. However, because ADTrees are memory"
                + " intensive, memory problems may occur. Switching this option off makes"
                + " the structure learning algorithms slower, and run with less memory."
                + " By default, ADTrees are used.";
    }

    /**
     * @return a string to describe the SearchAlgorithm.
     */
    public String searchAlgorithmTipText() {
        return "Select method used for searching network structures.";
    }

    /**
     * This will return a string describing the BayesNetEstimator.
     * 
     * @return The string.
     */
    public String estimatorTipText() {
        return "Select Estimator algorithm for finding the conditional probability tables"
                + " of the Bayes Network.";
    }

    /**
     * @return a string to describe the BIFFile.
     */
    public String BIFFileTipText() {
        return "Set the name of a file in BIF XML format. A Bayes network learned"
                + " from data can be compared with the Bayes network represented by the BIF file."
                + " Statistics calculated are o.a. the number of missing and extra arcs.";
    }

    /**
     * This will return a string describing the classifier.
     * 
     * @return The string.
     */
    public String globalInfo() {
        return "Bayes Network learning using various search algorithms and " + "quality measures.\n"
                + "Base class for a Bayes Network classifier. Provides "
                + "datastructures (network structure, conditional probability "
                + "distributions, etc.) and facilities common to Bayes Network "
                + "learning algorithms like K2 and B.\n\n" + "For more information see:\n\n"
                + "http://www.cs.waikato.ac.nz/~remco/weka.pdf";
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv the options
     */
    public static void main(String[] argv) {
        runClassifier(new BayesNet(), argv);
    } // main

    /**
     * get name of the Bayes network
     * 
     * @return name of the Bayes net
     */
    public String getName() {
        return m_Instances.relationName();
    }

    /**
     * get number of nodes in the Bayes network
     * 
     * @return number of nodes
     */
    public int getNrOfNodes() {
        return m_Instances.numAttributes();
    }

    /**
     * get name of a node in the Bayes network
     * 
     * @param iNode index of the node
     * @return name of the specified node
     */
    public String getNodeName(int iNode) {
        return m_Instances.attribute(iNode).name();
    }

    /**
     * get number of values a node can take
     * 
     * @param iNode index of the node
     * @return cardinality of the specified node
     */
    public int getCardinality(int iNode) {
        return m_Instances.attribute(iNode).numValues();
    }

    /**
     * get name of a particular value of a node
     * 
     * @param iNode index of the node
     * @param iValue index of the value
     * @return cardinality of the specified node
     */
    public String getNodeValue(int iNode, int iValue) {
        return m_Instances.attribute(iNode).value(iValue);
    }

    /**
     * get number of parents of a node in the network structure
     * 
     * @param iNode index of the node
     * @return number of parents of the specified node
     */
    public int getNrOfParents(int iNode) {
        return m_ParentSets[iNode].getNrOfParents();
    }

    /**
     * get node index of a parent of a node in the network structure
     * 
     * @param iNode index of the node
     * @param iParent index of the parents, e.g., 0 is the first parent, 1 the
     *          second parent, etc.
     * @return node index of the iParent's parent of the specified node
     */
    public int getParent(int iNode, int iParent) {
        return m_ParentSets[iNode].getParent(iParent);
    }

    /**
     * Get full set of parent sets.
     * 
     * @return parent sets;
     */
    public ParentSet[] getParentSets() {
        return m_ParentSets;
    }

    /**
     * Get full set of estimators.
     * 
     * @return estimators;
     */
    public Estimator[][] getDistributions() {
        return m_Distributions;
    }

    /**
     * get number of values the collection of parents of a node can take
     * 
     * @param iNode index of the node
     * @return cardinality of the parent set of the specified node
     */
    public int getParentCardinality(int iNode) {
        return m_ParentSets[iNode].getCardinalityOfParents();
    }

    /**
     * get particular probability of the conditional probability distribtion of a
     * node given its parents.
     * 
     * @param iNode index of the node
     * @param iParent index of the parent set, 0 <= iParent <=
     *          getParentCardinality(iNode)
     * @param iValue index of the value, 0 <= iValue <= getCardinality(iNode)
     * @return probability
     */
    public double getProbability(int iNode, int iParent, int iValue) {
        return m_Distributions[iNode][iParent].getProbability(iValue);
    }

    /**
     * get the parent set of a node
     * 
     * @param iNode index of the node
     * @return Parent set of the specified node.
     */
    public ParentSet getParentSet(int iNode) {
        return m_ParentSets[iNode];
    }

    /**
     * get ADTree strucrture containing efficient representation of counts.
     * 
     * @return ADTree strucrture
     */
    public ADNode getADTree() {
        return m_ADTree;
    }

    // implementation of AdditionalMeasureProducer interface
    /**
     * Returns an enumeration of the measure names. Additional measures must
     * follow the naming convention of starting with "measure", eg. double
     * measureBlah()
     * 
     * @return an enumeration of the measure names
     */
    @Override
    public Enumeration<String> enumerateMeasures() {
        Vector<String> newVector = new Vector<String>(4);
        newVector.addElement("measureExtraArcs");
        newVector.addElement("measureMissingArcs");
        newVector.addElement("measureReversedArcs");
        newVector.addElement("measureDivergence");
        newVector.addElement("measureBayesScore");
        newVector.addElement("measureBDeuScore");
        newVector.addElement("measureMDLScore");
        newVector.addElement("measureAICScore");
        newVector.addElement("measureEntropyScore");
        return newVector.elements();
    } // enumerateMeasures

    public double measureExtraArcs() {
        if (m_otherBayesNet != null) {
            return m_otherBayesNet.extraArcs(this);
        }
        return 0;
    } // measureExtraArcs

    public double measureMissingArcs() {
        if (m_otherBayesNet != null) {
            return m_otherBayesNet.missingArcs(this);
        }
        return 0;
    } // measureMissingArcs

    public double measureReversedArcs() {
        if (m_otherBayesNet != null) {
            return m_otherBayesNet.reversedArcs(this);
        }
        return 0;
    } // measureReversedArcs

    public double measureDivergence() {
        if (m_otherBayesNet != null) {
            return m_otherBayesNet.divergence(this);
        }
        return 0;
    } // measureDivergence

    public double measureBayesScore() {
        try {
            LocalScoreSearchAlgorithm s = new LocalScoreSearchAlgorithm(this, m_Instances);
            return s.logScore(Scoreable.BAYES);
        } catch (ArithmeticException ex) {
            return Double.NaN;
        }
    } // measureBayesScore

    public double measureBDeuScore() {

        try {
            LocalScoreSearchAlgorithm s = new LocalScoreSearchAlgorithm(this, m_Instances);
            return s.logScore(Scoreable.BDeu);
        } catch (ArithmeticException ex) {
            return Double.NaN;
        }
    } // measureBDeuScore

    public double measureMDLScore() {

        try {
            LocalScoreSearchAlgorithm s = new LocalScoreSearchAlgorithm(this, m_Instances);
            return s.logScore(Scoreable.MDL);
        } catch (ArithmeticException ex) {
            return Double.NaN;
        }
    } // measureMDLScore

    public double measureAICScore() {

        try {
            LocalScoreSearchAlgorithm s = new LocalScoreSearchAlgorithm(this, m_Instances);
            return s.logScore(Scoreable.AIC);
        } catch (ArithmeticException ex) {
            return Double.NaN;
        }
    } // measureAICScore

    public double measureEntropyScore() {

        try {
            LocalScoreSearchAlgorithm s = new LocalScoreSearchAlgorithm(this, m_Instances);
            return s.logScore(Scoreable.ENTROPY);
        } catch (ArithmeticException ex) {
            return Double.NaN;
        }
    } // measureEntropyScore

    /**
     * Returns the value of the named measure
     * 
     * @param measureName the name of the measure to query for its value
     * @return the value of the named measure
     * @throws IllegalArgumentException if the named measure is not supported
     */
    @Override
    public double getMeasure(String measureName) {
        if (measureName.equals("measureExtraArcs")) {
            return measureExtraArcs();
        }
        if (measureName.equals("measureMissingArcs")) {
            return measureMissingArcs();
        }
        if (measureName.equals("measureReversedArcs")) {
            return measureReversedArcs();
        }
        if (measureName.equals("measureDivergence")) {
            return measureDivergence();
        }
        if (measureName.equals("measureBayesScore")) {
            return measureBayesScore();
        }
        if (measureName.equals("measureBDeuScore")) {
            return measureBDeuScore();
        }
        if (measureName.equals("measureMDLScore")) {
            return measureMDLScore();
        }
        if (measureName.equals("measureAICScore")) {
            return measureAICScore();
        }
        if (measureName.equals("measureEntropyScore")) {
            return measureEntropyScore();
        }
        return 0;
    } // getMeasure

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }
} // class BayesNet