Example usage for weka.core Instances numAttributes

List of usage examples for weka.core Instances numAttributes

Introduction

In this page you can find the example usage for weka.core Instances numAttributes.

Prototype


publicint numAttributes() 

Source Link

Document

Returns the number of attributes.

Usage

From source file:com.guidefreitas.locator.services.PredictionService.java

public Room predict(PredictionRequest request) {
    try {//www . j a v  a2  s. co m

        String arffData = this.generateTestData(request);
        StringReader reader = new StringReader(arffData);
        Instances unlabeled = new Instances(reader);
        System.out.println("Test data size: " + unlabeled.size());
        unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
        Instances labeled = new Instances(unlabeled);
        Double clsLabel = this.classifier.classifyInstance(unlabeled.get(0));
        labeled.instance(0).setClassValue(clsLabel);
        String roomIdString = unlabeled.classAttribute().value(clsLabel.intValue());

        Long roomId = Long.parseLong(roomIdString);
        Room predictedRoom = RoomService.getInstance().getById(roomId);
        System.out.println(clsLabel + " -> " + roomIdString + " -> " + predictedRoom.getName());
        return predictedRoom;

    } catch (Exception ex) {
        Logger.getLogger(PredictionService.class.getName()).log(Level.SEVERE, null, ex);
    }
    return null;
}

From source file:com.ifmo.recommendersystem.metafeatures.classifierbased.internal.extractors.MultilayerPerceptron.java

License:Open Source License

/**
 * Call this function to build and train a neural network for the training
 * data provided./*from   w  w w. ja v  a2  s  . c  o m*/
 *
 * @param i The training data.
 * @throws Exception if can't build classification properly.
 */
@Override
public void buildClassifier(Instances i) throws Exception {

    // can classifier handle the data?
    getCapabilities().testWithFail(i);

    // remove instances with missing class
    i = new Instances(i);
    i.deleteWithMissingClass();

    m_ZeroR = new weka.classifiers.rules.ZeroR();
    m_ZeroR.buildClassifier(i);
    // only class? -> use ZeroR model
    if (i.numAttributes() == 1) {
        System.err.println(
                "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!");
        m_useDefaultModel = true;
        return;
    } else {
        m_useDefaultModel = false;
    }

    m_epoch = 0;
    m_error = 0;
    m_instances = null;
    m_currentInstance = null;
    m_controlPanel = null;
    m_nodePanel = null;

    m_outputs = new NeuralEnd[0];
    m_inputs = new NeuralEnd[0];
    m_numAttributes = 0;
    m_numClasses = 0;
    m_neuralNodes = new NeuralConnection[0];

    m_selected = new ArrayList<NeuralConnection>(4);
    m_nextId = 0;
    m_stopIt = true;
    m_stopped = true;
    m_accepted = false;
    m_instances = new Instances(i);
    m_random = new Random(m_randomSeed);
    m_instances.randomize(m_random);

    if (m_useNomToBin) {
        m_nominalToBinaryFilter = new NominalToBinary();
        m_nominalToBinaryFilter.setInputFormat(m_instances);
        m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter);
    }
    m_numAttributes = m_instances.numAttributes() - 1;
    m_numClasses = m_instances.numClasses();

    setClassType(m_instances);

    // this sets up the validation set.
    Instances valSet = null;
    // numinval is needed later
    int numInVal = (int) (m_valSize / 100.0 * m_instances.numInstances());
    if (m_valSize > 0) {
        if (numInVal == 0) {
            numInVal = 1;
        }
        valSet = new Instances(m_instances, 0, numInVal);
    }
    // /////////

    setupInputs();

    setupOutputs();
    if (m_autoBuild) {
        setupHiddenLayer();
    }

    // ///////////////////////////
    // this sets up the gui for usage
    if (m_gui) {
        m_win = new JFrame();

        m_win.addWindowListener(new WindowAdapter() {
            @Override
            public void windowClosing(WindowEvent e) {
                boolean k = m_stopIt;
                m_stopIt = true;
                int well = JOptionPane
                        .showConfirmDialog(m_win,
                                "Are You Sure...\n" + "Click Yes To Accept" + " The Neural Network"
                                        + "\n Click No To Return",
                                "Accept Neural Network", JOptionPane.YES_NO_OPTION);

                if (well == 0) {
                    m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
                    m_accepted = true;
                    blocker(false);
                } else {
                    m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
                }
                m_stopIt = k;
            }
        });

        m_win.getContentPane().setLayout(new BorderLayout());
        m_win.setTitle("Neural Network");
        m_nodePanel = new NodePanel();
        // without the following two lines, the
        // NodePanel.paintComponents(Graphics)
        // method will go berserk if the network doesn't fit completely: it will
        // get called on a constant basis, using 100% of the CPU
        // see the following forum thread:
        // http://forum.java.sun.com/thread.jspa?threadID=580929&messageID=2945011
        m_nodePanel.setPreferredSize(new Dimension(640, 480));
        m_nodePanel.revalidate();

        JScrollPane sp = new JScrollPane(m_nodePanel, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
                JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
        m_controlPanel = new ControlPanel();

        m_win.getContentPane().add(sp, BorderLayout.CENTER);
        m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH);
        m_win.setSize(640, 480);
        m_win.setVisible(true);
    }

    // This sets up the initial state of the gui
    if (m_gui) {
        blocker(true);
        m_controlPanel.m_changeEpochs.setEnabled(false);
        m_controlPanel.m_changeLearning.setEnabled(false);
        m_controlPanel.m_changeMomentum.setEnabled(false);
    }

    // For silly situations in which the network gets accepted before training
    // commenses
    if (m_numeric) {
        setEndsToLinear();
    }
    if (m_accepted) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
        m_instances = new Instances(m_instances, 0);
        m_currentInstance = null;
        return;
    }

    // connections done.
    double right = 0;
    double driftOff = 0;
    double lastRight = Double.POSITIVE_INFINITY;
    double bestError = Double.POSITIVE_INFINITY;
    double tempRate;
    double totalWeight = 0;
    double totalValWeight = 0;
    double origRate = m_learningRate; // only used for when reset

    // ensure that at least 1 instance is trained through.
    if (numInVal == m_instances.numInstances()) {
        numInVal--;
    }
    if (numInVal < 0) {
        numInVal = 0;
    }
    for (int noa = numInVal; noa < m_instances.numInstances(); noa++) {
        if (!m_instances.instance(noa).classIsMissing()) {
            totalWeight += m_instances.instance(noa).weight();
        }
    }
    if (m_valSize != 0) {
        for (int noa = 0; noa < valSet.numInstances(); noa++) {
            if (!valSet.instance(noa).classIsMissing()) {
                totalValWeight += valSet.instance(noa).weight();
            }
        }
    }
    m_stopped = false;

    for (int noa = 1; noa < m_numEpochs + 1; noa++) {
        right = 0;
        for (int nob = numInVal; nob < m_instances.numInstances(); nob++) {
            m_currentInstance = m_instances.instance(nob);

            if (!m_currentInstance.classIsMissing()) {

                // this is where the network updating (and training occurs, for the
                // training set
                resetNetwork();
                calculateOutputs();
                tempRate = m_learningRate * m_currentInstance.weight();
                if (m_decay) {
                    tempRate /= noa;
                }

                right += (calculateErrors() / m_instances.numClasses()) * m_currentInstance.weight();
                updateNetworkWeights(tempRate, m_momentum);

            }

        }
        right /= totalWeight;
        if (Double.isInfinite(right) || Double.isNaN(right)) {
            if (!m_reset) {
                m_instances = null;
                throw new Exception("Network cannot train. Try restarting with a" + " smaller learning rate.");
            } else {
                // reset the network if possible
                if (m_learningRate <= Utils.SMALL) {
                    throw new IllegalStateException(
                            "Learning rate got too small (" + m_learningRate + " <= " + Utils.SMALL + ")!");
                }
                m_learningRate /= 2;
                buildClassifier(i);
                m_learningRate = origRate;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }

        // //////////////////////do validation testing if applicable
        if (m_valSize != 0) {
            right = 0;
            for (int nob = 0; nob < valSet.numInstances(); nob++) {
                m_currentInstance = valSet.instance(nob);
                if (!m_currentInstance.classIsMissing()) {
                    // this is where the network updating occurs, for the validation set
                    resetNetwork();
                    calculateOutputs();
                    right += (calculateErrors() / valSet.numClasses()) * m_currentInstance.weight();
                    // note 'right' could be calculated here just using
                    // the calculate output values. This would be faster.
                    // be less modular
                }

            }

            if (right < lastRight) {
                if (right < bestError) {
                    bestError = right;
                    // save the network weights at this point
                    for (int noc = 0; noc < m_numClasses; noc++) {
                        m_outputs[noc].saveWeights();
                    }
                    driftOff = 0;
                }
            } else {
                driftOff++;
            }
            lastRight = right;
            if (driftOff > m_driftThreshold || noa + 1 >= m_numEpochs) {
                for (int noc = 0; noc < m_numClasses; noc++) {
                    m_outputs[noc].restoreWeights();
                }
                m_accepted = true;
            }
            right /= totalValWeight;
        }
        m_epoch = noa;
        m_error = right;
        // shows what the neuralnet is upto if a gui exists.
        updateDisplay();
        // This junction controls what state the gui is in at the end of each
        // epoch, Such as if it is paused, if it is resumable etc...
        if (m_gui) {
            while ((m_stopIt || (m_epoch >= m_numEpochs && m_valSize == 0)) && !m_accepted) {
                m_stopIt = true;
                m_stopped = true;
                if (m_epoch >= m_numEpochs && m_valSize == 0) {

                    m_controlPanel.m_startStop.setEnabled(false);
                } else {
                    m_controlPanel.m_startStop.setEnabled(true);
                }
                m_controlPanel.m_startStop.setText("Start");
                m_controlPanel.m_startStop.setActionCommand("Start");
                m_controlPanel.m_changeEpochs.setEnabled(true);
                m_controlPanel.m_changeLearning.setEnabled(true);
                m_controlPanel.m_changeMomentum.setEnabled(true);

                blocker(true);
                if (m_numeric) {
                    setEndsToLinear();
                }
            }
            m_controlPanel.m_changeEpochs.setEnabled(false);
            m_controlPanel.m_changeLearning.setEnabled(false);
            m_controlPanel.m_changeMomentum.setEnabled(false);

            m_stopped = false;
            // if the network has been accepted stop the training loop
            if (m_accepted) {
                m_win.dispose();
                m_controlPanel = null;
                m_nodePanel = null;
                m_instances = new Instances(m_instances, 0);
                m_currentInstance = null;
                return;
            }
        }
        if (m_accepted) {
            m_instances = new Instances(m_instances, 0);
            m_currentInstance = null;
            return;
        }
    }
    if (m_gui) {
        m_win.dispose();
        m_controlPanel = null;
        m_nodePanel = null;
    }
    m_instances = new Instances(m_instances, 0);
    m_currentInstance = null;
}

From source file:com.mechaglot_Alpha2.controller.Calculate.java

License:Creative Commons License

/**
 * //from w w  w. ja  v  a 2  s  .  c o m
 * @param in
 *            String representing the calculated String-metric distances,
 *            comma separated.
 * @return Instance The inputted series of numbers (comma separated) as
 *         Instance.
 */

private Instance instanceMaker(String in) {

    String[] s = in.split(",");
    double[] r = new double[s.length];
    for (int t = 0; t < r.length; t++) {
        r[t] = Double.parseDouble(s[t]);
    }

    int sz = r.length - 1;

    ArrayList<Attribute> atts = new ArrayList<Attribute>(sz);

    for (int t = 0; t < sz + 1; t++) {
        atts.add(new Attribute("number" + t, t));
    }

    Instances dataRaw = new Instances("TestInstances", atts, sz);
    dataRaw.add(new DenseInstance(1.0, r));
    Instance first = dataRaw.firstInstance(); //
    int cIdx = dataRaw.numAttributes() - 1;
    dataRaw.setClassIndex(cIdx);

    return first;

}

From source file:com.mycompany.id3classifier.ID3Shell.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource("lensesData.csv");
    Instances dataSet = source.getDataSet();

    Discretize filter = new Discretize();
    filter.setInputFormat(dataSet);//  w  ww.  ja v a  2  s  .co m
    dataSet = Filter.useFilter(dataSet, filter);

    Standardize standardize = new Standardize();
    standardize.setInputFormat(dataSet);
    dataSet = Filter.useFilter(dataSet, standardize);

    dataSet.setClassIndex(dataSet.numAttributes() - 1);
    dataSet.randomize(new Random(9001)); //It's over 9000!!

    int folds = 10;
    //Perform crossvalidation
    Evaluation eval = new Evaluation(dataSet);
    for (int n = 0; n < folds; n++) {
        int trainingSize = (int) Math.round(dataSet.numInstances() * .7);
        int testSize = dataSet.numInstances() - trainingSize;

        Instances trainingData = dataSet.trainCV(folds, n);
        Instances testData = dataSet.testCV(folds, n);

        ID3Classifier classifier = new ID3Classifier();
        // Id3 classifier = new Id3();
        classifier.buildClassifier(trainingData);

        eval.evaluateModel(classifier, testData);
    }
    System.out.println(eval.toSummaryString("\nResults:\n", false));
}

From source file:com.mycompany.knnclassifier.kNNShell.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource("carData.csv");
    Instances dataSet = source.getDataSet();

    Standardize standardize = new Standardize();
    standardize.setInputFormat(dataSet);
    dataSet = Filter.useFilter(dataSet, standardize);

    dataSet.setClassIndex(dataSet.numAttributes() - 1);
    dataSet.randomize(new Random(9001)); //It's over 9000!!

    int trainingSize = (int) Math.round(dataSet.numInstances() * .7);
    int testSize = dataSet.numInstances() - trainingSize;

    Instances trainingData = new Instances(dataSet, 0, trainingSize);
    Instances testData = new Instances(dataSet, trainingSize, testSize);

    kNNClassifier classifier = new kNNClassifier(3);
    classifier.buildClassifier(trainingData);

    //Used to compare to Weka's built in KNN algorithm
    //Classifier classifier = new IBk(1);
    //classifier.buildClassifier(trainingData);

    Evaluation eval = new Evaluation(trainingData);
    eval.evaluateModel(classifier, testData);

    System.out.println(eval.toSummaryString("\nResults:\n", false));
}

From source file:com.mycompany.neuralnetwork.NeuralNetworkClassifier.java

@Override
public void buildClassifier(Instances instances) throws Exception {
    int inputCount = instances.numAttributes() - 1;

    List<Integer> nodesPerLayer = new ArrayList<>();

    for (int i = 0; i < layers - 1; i++) {
        nodesPerLayer.add(inputCount);// w  ww.ja  v a  2 s.c o  m
    }

    nodesPerLayer.add(instances.numDistinctValues(instances.classIndex()));

    network = new Network(inputCount, nodesPerLayer);

    ArrayList<Double> errorsPerIteration = new ArrayList<>();
    for (int j = 0; j < iterations; j++) {
        double errorsPer = 0;
        for (int k = 0; k < instances.numInstances(); k++) {
            Instance instance = instances.instance(k);

            List<Double> input = new ArrayList<>();
            for (int i = 0; i < instance.numAttributes(); i++) {
                if (Double.isNaN(instance.value(i)) && i != instance.classIndex())
                    input.add(0.0);
                else if (i != instance.classIndex())
                    input.add(instance.value(i));
            }

            errorsPer += network.train(input, instance.value(instance.classIndex()), learningFactor);
        }

        errorsPerIteration.add(errorsPer);

    }

    //Display Errors This is used to collect the data for the graph 
    //for (Double d : errorsPerIteration) 
    //{
    //  System.out.println(d);
    //}
}

From source file:com.mycompany.neuralnetwork.NeuralNetworkShell.java

public static void main(String[] args) throws Exception {
    ConverterUtils.DataSource source = new ConverterUtils.DataSource("irisData.csv");
    Instances dataSet = source.getDataSet();

    Standardize standardize = new Standardize();
    standardize.setInputFormat(dataSet);
    dataSet = Filter.useFilter(dataSet, standardize);
    dataSet.setClassIndex(dataSet.numAttributes() - 1);
    dataSet.randomize(new Random(9001)); //It's over 9000!!

    int trainingSize = (int) Math.round(dataSet.numInstances() * .7);
    int testSize = dataSet.numInstances() - trainingSize;

    Instances trainingData = new Instances(dataSet, 0, trainingSize);
    Instances testData = new Instances(dataSet, trainingSize, testSize);

    //MultilayerPerceptron classifier = new MultilayerPerceptron();
    NeuralNetworkClassifier classifier = new NeuralNetworkClassifier(3, 20000, 0.1);
    classifier.buildClassifier(trainingData);

    Evaluation eval = new Evaluation(trainingData);
    eval.evaluateModel(classifier, testData);

    System.out.println(eval.toSummaryString("\nResults:\n", false));
}

From source file:com.mycompany.tubesann.MyANN.java

private void initiate(Instances train) throws Exception {
    startNode = new InputNode[train.numAttributes()];

    for (int i = 0; i < startNode.length; i++) {
        System.out.println("i " + i);
        startNode[i] = new InputNode(i);
        if (rule == 1) {
            startNode[i].setActivationFunction(1);
        } else if (rule == 4) {
            startNode[i].setActivationFunction(2);
        }//from   w ww  .  j  a  va  2  s.  c o m
    }

    if (isWeightRandom) {
        double rangeMin = 0.0;
        double rangeMax = 1.0;
        for (int i = 0; i < startNode.length; i++) {
            this.weight.put(i, new Double(Math.random() * (rangeMax - rangeMin) + rangeMin));
        }
    }

    finalNode = new Node[train.numClasses()];
    for (int i = 0; i < train.numClasses(); i++) {
        //System.out.println("i "+(i+startNode.length));
        finalNode[i] = new Node(i + startNode.length);
        if (rule == 1) {
            finalNode[i].setActivationFunction(1);
        } else if (rule == 4) {
            finalNode[i].setActivationFunction(2);
        }
        finalNode[i].setPrev(startNode);
        HashMap<Integer, Double> tempWeight = new HashMap<Integer, Double>();
        tempWeight = (HashMap<Integer, Double>) weight.clone();
        finalNode[i].setPrevWeight(tempWeight);
    }
    if (rule == 4) {
        setHiddenLayer(1, 3);
    }
}

From source file:com.mycompany.tubesann.MyANN.java

public void buildClassifier(Instances train) throws Exception {

    initiate(train);// www.j  av a2s.c om

    double[][] testInput = new double[train.numInstances()][train.numAttributes()];
    double[][] testDesiredOutput = new double[train.numInstances()][train.numClasses()];
    for (int i = 0; i < train.numInstances(); i++) {
        for (int j = 0; j < train.numClasses(); j++) {
            if (j == (int) train.instance(i).classValue()) {
                testDesiredOutput[i][j] = 1;
            } else if (rule == 1) {
                testDesiredOutput[i][j] = -1;
            } else {
                testDesiredOutput[i][j] = 0;
            }
            //System.out.println("Desired "+i+j+" "+testDesiredOutput[i][j]);
        }
        //testInput[i][0] = 0;
        for (int j = 0; j < train.numAttributes() - 1; j++) {
            testInput[i][j] = train.instance(i).value(j);
        }
    }
    boolean stop = false;
    int iterator = 1;
    while (!stop) {
        switch (rule) {
        case 1:
            perceptronTrainingRule(testInput, testDesiredOutput);
            break;
        case 2:
            batchGradientDescent(testInput, testDesiredOutput);
            break;
        case 3:
            deltaRule(testInput, testDesiredOutput);
            break;
        case 4:
            backPropagation(testInput, testDesiredOutput);
            break;
        default:
            break;
        }
        if (deltaMSE != null) {
            if (squareError < deltaMSE) {
                stop = true;
            }
        }
        if (maxIteration != null) {
            if (iterator >= maxIteration) {
                stop = true;
            }
        }
        iterator++;
    }
}

From source file:com.openkm.kea.filter.KEAPhraseFilter.java

License:Open Source License

/**
 * Sets the format of the input instances.
 *
 * @param instanceInfo an Instances object containing the input
 * instance structure (any instances contained in the object are
 * ignored - only the structure is required).
 * @return true if the outputFormat may be collected immediately 
 *//*from  w  w  w.  j  a  va 2  s  .  c  o m*/
public boolean setInputFormat(Instances instanceInfo) throws Exception {

    super.setInputFormat(instanceInfo);
    setOutputFormat(instanceInfo);
    m_SelectCols.setUpper(instanceInfo.numAttributes() - 1);

    return true;
}