List of usage examples for weka.core Instances numAttributes
publicint numAttributes()
From source file:com.guidefreitas.locator.services.PredictionService.java
public Room predict(PredictionRequest request) { try {//www . j a v a2 s. co m String arffData = this.generateTestData(request); StringReader reader = new StringReader(arffData); Instances unlabeled = new Instances(reader); System.out.println("Test data size: " + unlabeled.size()); unlabeled.setClassIndex(unlabeled.numAttributes() - 1); Instances labeled = new Instances(unlabeled); Double clsLabel = this.classifier.classifyInstance(unlabeled.get(0)); labeled.instance(0).setClassValue(clsLabel); String roomIdString = unlabeled.classAttribute().value(clsLabel.intValue()); Long roomId = Long.parseLong(roomIdString); Room predictedRoom = RoomService.getInstance().getById(roomId); System.out.println(clsLabel + " -> " + roomIdString + " -> " + predictedRoom.getName()); return predictedRoom; } catch (Exception ex) { Logger.getLogger(PredictionService.class.getName()).log(Level.SEVERE, null, ex); } return null; }
From source file:com.ifmo.recommendersystem.metafeatures.classifierbased.internal.extractors.MultilayerPerceptron.java
License:Open Source License
/** * Call this function to build and train a neural network for the training * data provided./*from w w w. ja v a2 s . c o m*/ * * @param i The training data. * @throws Exception if can't build classification properly. */ @Override public void buildClassifier(Instances i) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(i); // remove instances with missing class i = new Instances(i); i.deleteWithMissingClass(); m_ZeroR = new weka.classifiers.rules.ZeroR(); m_ZeroR.buildClassifier(i); // only class? -> use ZeroR model if (i.numAttributes() == 1) { System.err.println( "Cannot build model (only class attribute present in data!), " + "using ZeroR model instead!"); m_useDefaultModel = true; return; } else { m_useDefaultModel = false; } m_epoch = 0; m_error = 0; m_instances = null; m_currentInstance = null; m_controlPanel = null; m_nodePanel = null; m_outputs = new NeuralEnd[0]; m_inputs = new NeuralEnd[0]; m_numAttributes = 0; m_numClasses = 0; m_neuralNodes = new NeuralConnection[0]; m_selected = new ArrayList<NeuralConnection>(4); m_nextId = 0; m_stopIt = true; m_stopped = true; m_accepted = false; m_instances = new Instances(i); m_random = new Random(m_randomSeed); m_instances.randomize(m_random); if (m_useNomToBin) { m_nominalToBinaryFilter = new NominalToBinary(); m_nominalToBinaryFilter.setInputFormat(m_instances); m_instances = Filter.useFilter(m_instances, m_nominalToBinaryFilter); } m_numAttributes = m_instances.numAttributes() - 1; m_numClasses = m_instances.numClasses(); setClassType(m_instances); // this sets up the validation set. Instances valSet = null; // numinval is needed later int numInVal = (int) (m_valSize / 100.0 * m_instances.numInstances()); if (m_valSize > 0) { if (numInVal == 0) { numInVal = 1; } valSet = new Instances(m_instances, 0, numInVal); } // ///////// setupInputs(); setupOutputs(); if (m_autoBuild) { setupHiddenLayer(); } // /////////////////////////// // this sets up the gui for usage if (m_gui) { m_win = new JFrame(); m_win.addWindowListener(new WindowAdapter() { @Override public void windowClosing(WindowEvent e) { boolean k = m_stopIt; m_stopIt = true; int well = JOptionPane .showConfirmDialog(m_win, "Are You Sure...\n" + "Click Yes To Accept" + " The Neural Network" + "\n Click No To Return", "Accept Neural Network", JOptionPane.YES_NO_OPTION); if (well == 0) { m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); m_accepted = true; blocker(false); } else { m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE); } m_stopIt = k; } }); m_win.getContentPane().setLayout(new BorderLayout()); m_win.setTitle("Neural Network"); m_nodePanel = new NodePanel(); // without the following two lines, the // NodePanel.paintComponents(Graphics) // method will go berserk if the network doesn't fit completely: it will // get called on a constant basis, using 100% of the CPU // see the following forum thread: // http://forum.java.sun.com/thread.jspa?threadID=580929&messageID=2945011 m_nodePanel.setPreferredSize(new Dimension(640, 480)); m_nodePanel.revalidate(); JScrollPane sp = new JScrollPane(m_nodePanel, JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, JScrollPane.HORIZONTAL_SCROLLBAR_NEVER); m_controlPanel = new ControlPanel(); m_win.getContentPane().add(sp, BorderLayout.CENTER); m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH); m_win.setSize(640, 480); m_win.setVisible(true); } // This sets up the initial state of the gui if (m_gui) { blocker(true); m_controlPanel.m_changeEpochs.setEnabled(false); m_controlPanel.m_changeLearning.setEnabled(false); m_controlPanel.m_changeMomentum.setEnabled(false); } // For silly situations in which the network gets accepted before training // commenses if (m_numeric) { setEndsToLinear(); } if (m_accepted) { m_win.dispose(); m_controlPanel = null; m_nodePanel = null; m_instances = new Instances(m_instances, 0); m_currentInstance = null; return; } // connections done. double right = 0; double driftOff = 0; double lastRight = Double.POSITIVE_INFINITY; double bestError = Double.POSITIVE_INFINITY; double tempRate; double totalWeight = 0; double totalValWeight = 0; double origRate = m_learningRate; // only used for when reset // ensure that at least 1 instance is trained through. if (numInVal == m_instances.numInstances()) { numInVal--; } if (numInVal < 0) { numInVal = 0; } for (int noa = numInVal; noa < m_instances.numInstances(); noa++) { if (!m_instances.instance(noa).classIsMissing()) { totalWeight += m_instances.instance(noa).weight(); } } if (m_valSize != 0) { for (int noa = 0; noa < valSet.numInstances(); noa++) { if (!valSet.instance(noa).classIsMissing()) { totalValWeight += valSet.instance(noa).weight(); } } } m_stopped = false; for (int noa = 1; noa < m_numEpochs + 1; noa++) { right = 0; for (int nob = numInVal; nob < m_instances.numInstances(); nob++) { m_currentInstance = m_instances.instance(nob); if (!m_currentInstance.classIsMissing()) { // this is where the network updating (and training occurs, for the // training set resetNetwork(); calculateOutputs(); tempRate = m_learningRate * m_currentInstance.weight(); if (m_decay) { tempRate /= noa; } right += (calculateErrors() / m_instances.numClasses()) * m_currentInstance.weight(); updateNetworkWeights(tempRate, m_momentum); } } right /= totalWeight; if (Double.isInfinite(right) || Double.isNaN(right)) { if (!m_reset) { m_instances = null; throw new Exception("Network cannot train. Try restarting with a" + " smaller learning rate."); } else { // reset the network if possible if (m_learningRate <= Utils.SMALL) { throw new IllegalStateException( "Learning rate got too small (" + m_learningRate + " <= " + Utils.SMALL + ")!"); } m_learningRate /= 2; buildClassifier(i); m_learningRate = origRate; m_instances = new Instances(m_instances, 0); m_currentInstance = null; return; } } // //////////////////////do validation testing if applicable if (m_valSize != 0) { right = 0; for (int nob = 0; nob < valSet.numInstances(); nob++) { m_currentInstance = valSet.instance(nob); if (!m_currentInstance.classIsMissing()) { // this is where the network updating occurs, for the validation set resetNetwork(); calculateOutputs(); right += (calculateErrors() / valSet.numClasses()) * m_currentInstance.weight(); // note 'right' could be calculated here just using // the calculate output values. This would be faster. // be less modular } } if (right < lastRight) { if (right < bestError) { bestError = right; // save the network weights at this point for (int noc = 0; noc < m_numClasses; noc++) { m_outputs[noc].saveWeights(); } driftOff = 0; } } else { driftOff++; } lastRight = right; if (driftOff > m_driftThreshold || noa + 1 >= m_numEpochs) { for (int noc = 0; noc < m_numClasses; noc++) { m_outputs[noc].restoreWeights(); } m_accepted = true; } right /= totalValWeight; } m_epoch = noa; m_error = right; // shows what the neuralnet is upto if a gui exists. updateDisplay(); // This junction controls what state the gui is in at the end of each // epoch, Such as if it is paused, if it is resumable etc... if (m_gui) { while ((m_stopIt || (m_epoch >= m_numEpochs && m_valSize == 0)) && !m_accepted) { m_stopIt = true; m_stopped = true; if (m_epoch >= m_numEpochs && m_valSize == 0) { m_controlPanel.m_startStop.setEnabled(false); } else { m_controlPanel.m_startStop.setEnabled(true); } m_controlPanel.m_startStop.setText("Start"); m_controlPanel.m_startStop.setActionCommand("Start"); m_controlPanel.m_changeEpochs.setEnabled(true); m_controlPanel.m_changeLearning.setEnabled(true); m_controlPanel.m_changeMomentum.setEnabled(true); blocker(true); if (m_numeric) { setEndsToLinear(); } } m_controlPanel.m_changeEpochs.setEnabled(false); m_controlPanel.m_changeLearning.setEnabled(false); m_controlPanel.m_changeMomentum.setEnabled(false); m_stopped = false; // if the network has been accepted stop the training loop if (m_accepted) { m_win.dispose(); m_controlPanel = null; m_nodePanel = null; m_instances = new Instances(m_instances, 0); m_currentInstance = null; return; } } if (m_accepted) { m_instances = new Instances(m_instances, 0); m_currentInstance = null; return; } } if (m_gui) { m_win.dispose(); m_controlPanel = null; m_nodePanel = null; } m_instances = new Instances(m_instances, 0); m_currentInstance = null; }
From source file:com.mechaglot_Alpha2.controller.Calculate.java
License:Creative Commons License
/** * //from w w w. ja v a 2 s . c o m * @param in * String representing the calculated String-metric distances, * comma separated. * @return Instance The inputted series of numbers (comma separated) as * Instance. */ private Instance instanceMaker(String in) { String[] s = in.split(","); double[] r = new double[s.length]; for (int t = 0; t < r.length; t++) { r[t] = Double.parseDouble(s[t]); } int sz = r.length - 1; ArrayList<Attribute> atts = new ArrayList<Attribute>(sz); for (int t = 0; t < sz + 1; t++) { atts.add(new Attribute("number" + t, t)); } Instances dataRaw = new Instances("TestInstances", atts, sz); dataRaw.add(new DenseInstance(1.0, r)); Instance first = dataRaw.firstInstance(); // int cIdx = dataRaw.numAttributes() - 1; dataRaw.setClassIndex(cIdx); return first; }
From source file:com.mycompany.id3classifier.ID3Shell.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource("lensesData.csv"); Instances dataSet = source.getDataSet(); Discretize filter = new Discretize(); filter.setInputFormat(dataSet);// w ww. ja v a 2 s .co m dataSet = Filter.useFilter(dataSet, filter); Standardize standardize = new Standardize(); standardize.setInputFormat(dataSet); dataSet = Filter.useFilter(dataSet, standardize); dataSet.setClassIndex(dataSet.numAttributes() - 1); dataSet.randomize(new Random(9001)); //It's over 9000!! int folds = 10; //Perform crossvalidation Evaluation eval = new Evaluation(dataSet); for (int n = 0; n < folds; n++) { int trainingSize = (int) Math.round(dataSet.numInstances() * .7); int testSize = dataSet.numInstances() - trainingSize; Instances trainingData = dataSet.trainCV(folds, n); Instances testData = dataSet.testCV(folds, n); ID3Classifier classifier = new ID3Classifier(); // Id3 classifier = new Id3(); classifier.buildClassifier(trainingData); eval.evaluateModel(classifier, testData); } System.out.println(eval.toSummaryString("\nResults:\n", false)); }
From source file:com.mycompany.knnclassifier.kNNShell.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource("carData.csv"); Instances dataSet = source.getDataSet(); Standardize standardize = new Standardize(); standardize.setInputFormat(dataSet); dataSet = Filter.useFilter(dataSet, standardize); dataSet.setClassIndex(dataSet.numAttributes() - 1); dataSet.randomize(new Random(9001)); //It's over 9000!! int trainingSize = (int) Math.round(dataSet.numInstances() * .7); int testSize = dataSet.numInstances() - trainingSize; Instances trainingData = new Instances(dataSet, 0, trainingSize); Instances testData = new Instances(dataSet, trainingSize, testSize); kNNClassifier classifier = new kNNClassifier(3); classifier.buildClassifier(trainingData); //Used to compare to Weka's built in KNN algorithm //Classifier classifier = new IBk(1); //classifier.buildClassifier(trainingData); Evaluation eval = new Evaluation(trainingData); eval.evaluateModel(classifier, testData); System.out.println(eval.toSummaryString("\nResults:\n", false)); }
From source file:com.mycompany.neuralnetwork.NeuralNetworkClassifier.java
@Override public void buildClassifier(Instances instances) throws Exception { int inputCount = instances.numAttributes() - 1; List<Integer> nodesPerLayer = new ArrayList<>(); for (int i = 0; i < layers - 1; i++) { nodesPerLayer.add(inputCount);// w ww.ja v a 2 s.c o m } nodesPerLayer.add(instances.numDistinctValues(instances.classIndex())); network = new Network(inputCount, nodesPerLayer); ArrayList<Double> errorsPerIteration = new ArrayList<>(); for (int j = 0; j < iterations; j++) { double errorsPer = 0; for (int k = 0; k < instances.numInstances(); k++) { Instance instance = instances.instance(k); List<Double> input = new ArrayList<>(); for (int i = 0; i < instance.numAttributes(); i++) { if (Double.isNaN(instance.value(i)) && i != instance.classIndex()) input.add(0.0); else if (i != instance.classIndex()) input.add(instance.value(i)); } errorsPer += network.train(input, instance.value(instance.classIndex()), learningFactor); } errorsPerIteration.add(errorsPer); } //Display Errors This is used to collect the data for the graph //for (Double d : errorsPerIteration) //{ // System.out.println(d); //} }
From source file:com.mycompany.neuralnetwork.NeuralNetworkShell.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource("irisData.csv"); Instances dataSet = source.getDataSet(); Standardize standardize = new Standardize(); standardize.setInputFormat(dataSet); dataSet = Filter.useFilter(dataSet, standardize); dataSet.setClassIndex(dataSet.numAttributes() - 1); dataSet.randomize(new Random(9001)); //It's over 9000!! int trainingSize = (int) Math.round(dataSet.numInstances() * .7); int testSize = dataSet.numInstances() - trainingSize; Instances trainingData = new Instances(dataSet, 0, trainingSize); Instances testData = new Instances(dataSet, trainingSize, testSize); //MultilayerPerceptron classifier = new MultilayerPerceptron(); NeuralNetworkClassifier classifier = new NeuralNetworkClassifier(3, 20000, 0.1); classifier.buildClassifier(trainingData); Evaluation eval = new Evaluation(trainingData); eval.evaluateModel(classifier, testData); System.out.println(eval.toSummaryString("\nResults:\n", false)); }
From source file:com.mycompany.tubesann.MyANN.java
private void initiate(Instances train) throws Exception { startNode = new InputNode[train.numAttributes()]; for (int i = 0; i < startNode.length; i++) { System.out.println("i " + i); startNode[i] = new InputNode(i); if (rule == 1) { startNode[i].setActivationFunction(1); } else if (rule == 4) { startNode[i].setActivationFunction(2); }//from w ww . j a va 2 s. c o m } if (isWeightRandom) { double rangeMin = 0.0; double rangeMax = 1.0; for (int i = 0; i < startNode.length; i++) { this.weight.put(i, new Double(Math.random() * (rangeMax - rangeMin) + rangeMin)); } } finalNode = new Node[train.numClasses()]; for (int i = 0; i < train.numClasses(); i++) { //System.out.println("i "+(i+startNode.length)); finalNode[i] = new Node(i + startNode.length); if (rule == 1) { finalNode[i].setActivationFunction(1); } else if (rule == 4) { finalNode[i].setActivationFunction(2); } finalNode[i].setPrev(startNode); HashMap<Integer, Double> tempWeight = new HashMap<Integer, Double>(); tempWeight = (HashMap<Integer, Double>) weight.clone(); finalNode[i].setPrevWeight(tempWeight); } if (rule == 4) { setHiddenLayer(1, 3); } }
From source file:com.mycompany.tubesann.MyANN.java
public void buildClassifier(Instances train) throws Exception { initiate(train);// www.j av a2s.c om double[][] testInput = new double[train.numInstances()][train.numAttributes()]; double[][] testDesiredOutput = new double[train.numInstances()][train.numClasses()]; for (int i = 0; i < train.numInstances(); i++) { for (int j = 0; j < train.numClasses(); j++) { if (j == (int) train.instance(i).classValue()) { testDesiredOutput[i][j] = 1; } else if (rule == 1) { testDesiredOutput[i][j] = -1; } else { testDesiredOutput[i][j] = 0; } //System.out.println("Desired "+i+j+" "+testDesiredOutput[i][j]); } //testInput[i][0] = 0; for (int j = 0; j < train.numAttributes() - 1; j++) { testInput[i][j] = train.instance(i).value(j); } } boolean stop = false; int iterator = 1; while (!stop) { switch (rule) { case 1: perceptronTrainingRule(testInput, testDesiredOutput); break; case 2: batchGradientDescent(testInput, testDesiredOutput); break; case 3: deltaRule(testInput, testDesiredOutput); break; case 4: backPropagation(testInput, testDesiredOutput); break; default: break; } if (deltaMSE != null) { if (squareError < deltaMSE) { stop = true; } } if (maxIteration != null) { if (iterator >= maxIteration) { stop = true; } } iterator++; } }
From source file:com.openkm.kea.filter.KEAPhraseFilter.java
License:Open Source License
/** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input * instance structure (any instances contained in the object are * ignored - only the structure is required). * @return true if the outputFormat may be collected immediately *//*from w w w. j a va 2 s . c o m*/ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); setOutputFormat(instanceInfo); m_SelectCols.setUpper(instanceInfo.numAttributes() - 1); return true; }