Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package com.mycompany.neuralnetwork; import java.util.Random; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.functions.MultilayerPerceptron; import weka.core.Instances; import weka.core.converters.ConverterUtils; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Standardize; /** * * @author Besseym */ public class NeuralNetworkShell { public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource("irisData.csv"); Instances dataSet = source.getDataSet(); Standardize standardize = new Standardize(); standardize.setInputFormat(dataSet); dataSet = Filter.useFilter(dataSet, standardize); dataSet.setClassIndex(dataSet.numAttributes() - 1); dataSet.randomize(new Random(9001)); //It's over 9000!! int trainingSize = (int) Math.round(dataSet.numInstances() * .7); int testSize = dataSet.numInstances() - trainingSize; Instances trainingData = new Instances(dataSet, 0, trainingSize); Instances testData = new Instances(dataSet, trainingSize, testSize); //MultilayerPerceptron classifier = new MultilayerPerceptron(); NeuralNetworkClassifier classifier = new NeuralNetworkClassifier(3, 20000, 0.1); classifier.buildClassifier(trainingData); Evaluation eval = new Evaluation(trainingData); eval.evaluateModel(classifier, testData); System.out.println(eval.toSummaryString("\nResults:\n", false)); } }