List of usage examples for weka.core Instances numAttributes
publicint numAttributes()
From source file:ANN_Single.SinglelayerPerceptron.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource( ("D:\\Program Files\\Weka-3-8\\data\\diabetes.arff")); Instances train = source.getDataSet(); Normalize nm = new Normalize(); nm.setInputFormat(train);/* w w w .j a v a 2 s . co m*/ train = Filter.useFilter(train, nm); train.setClassIndex(train.numAttributes() - 1); System.out.println(); // System.out.println(i + " "+0.8); SinglelayerPerceptron slp = new SinglelayerPerceptron(train, 0.1, 5000); slp.buildClassifier(train); Evaluation eval = new Evaluation(train); // eval.crossValidateModel(slp, train, 10, new Random(1)); eval.evaluateModel(slp, train); System.out.println(eval.toSummaryString()); System.out.print(eval.toMatrixString()); }
From source file:ANN_single2.MultilayerPerceptron.java
public MultilayerPerceptron(Instances i, int numHide, double rate, double thres) { learningRate = rate;/*from www. j a v a2 s .c om*/ threshold = thres; numHiden = numHide; //inisialisasi array hidden listHidden = new ArrayList<>(); for (int idx = 0; idx < numHiden; idx++) { listHidden.add(new Node(i.numAttributes())); //1 untuk bias } //inialisasi array output listOutput = new ArrayList<>(); for (int idx = 0; idx < i.numClasses(); idx++) { listOutput.add(new Node(listHidden.size())); } }
From source file:ANN_single2.MultilayerPerceptron.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource( ("D:\\Program Files\\Weka-3-8\\data\\Team.arff")); Instances train = source.getDataSet(); Normalize nm = new Normalize(); nm.setInputFormat(train);//from w w w . java 2s .com train = Filter.useFilter(train, nm); train.setClassIndex(train.numAttributes() - 1); MultilayerPerceptron slp = new MultilayerPerceptron(train, 13, 0.1, 0.5); // slp.buildClassifier(train); Evaluation eval = new Evaluation(train); eval.crossValidateModel(slp, train, 10, new Random(1)); // eval.evaluateModel(slp, train); System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); }
From source file:ANN_single2.SinglelayerPerceptron.java
@Override public void buildClassifier(Instances i) { listOutput = new ArrayList<>(); for (int idx = 0; idx < i.numClasses(); idx++) { listOutput.add(new Node(i.numAttributes())); }// w w w. ja v a2s.com //mengubah class menjadi numeric (diambil indexnya) listDoubleinstance = new double[i.numInstances()]; for (int numIns = 0; numIns < i.numInstances(); numIns++) { listDoubleinstance[numIns] = i.instance(numIns).toDoubleArray()[i.classIndex()]; } double error = 0; for (int iter = 0; iter < itteration; iter++) { double errorThres = 0; for (int idxInstance = 0; idxInstance < i.numInstances(); idxInstance++) { //buat list input ArrayList<Double> listInput = new ArrayList<>(); listInput.add(1.0); //ini bias for (int idx = 0; idx < i.numAttributes() - 1; idx++) { listInput.add(i.get(idxInstance).value(idx)); } //Hitung output rumus = sigmoid dari sigma for (int idxOut = 0; idxOut < listOutput.size(); idxOut++) { output(listInput, idxOut); } //Hitung error calculateError(idxInstance); //update bobot updateBobot(listInput); } for (int idxOut = 0; idxOut < listOutput.size(); idxOut++) { errorThres += Math.pow(listOutput.get(idxOut).getError(), 2) / 2; } if (errorThres <= threshold) break; // System.out.println(errorThres); } // fold++; // for (int idx =0; idx < i.numInstances(); idx++) { // for (int idxOut=0; idxOut < listOutput.size(); idxOut++) { // error += Math.pow(listOutput.get(idxOut).getError(), 2)/2; // } // } // System.out.println("Fold " + fold); // System.out.println("error " + error); }
From source file:ANN_single2.SinglelayerPerceptron.java
public static void main(String[] args) throws Exception { ConverterUtils.DataSource source = new ConverterUtils.DataSource( ("D:\\Program Files\\Weka-3-8\\data\\Team.arff")); Instances train = source.getDataSet(); Normalize nm = new Normalize(); nm.setInputFormat(train);//w w w . j a va 2 s. c om train = Filter.useFilter(train, nm); train.setClassIndex(train.numAttributes() - 1); for (int i = 100; i < 3000; i += 100) { for (double j = 0.01; j < 1; j += 0.01) { System.out.println(i + " " + j); SinglelayerPerceptron slp = new SinglelayerPerceptron(i, j, 0.00); slp.buildClassifier(train); Evaluation eval = new Evaluation(train); // eval.crossValidateModel(slp, train,10, new Random(1)); eval.evaluateModel(slp, train); System.out.println(eval.toSummaryString()); System.out.println(eval.toMatrixString()); } } }
From source file:ap.mavenproject1.HelloWeka.java
public static void main(String args[]) { Instances data = null; ArffLoader loader = new ArffLoader(); try {/* w w w . j av a 2 s . c o m*/ loader.setFile(new File("C:\\Users\\USER\\Desktop\\data.arff")); data = loader.getDataSet(); data.setClassIndex(data.numAttributes() - 1); } catch (IOException ex) { Logger.getLogger(HelloWeka.class.getName()).log(Level.SEVERE, null, ex); } Apriori apriori = new Apriori(); try { NumericToNominal numericToNominal = new NumericToNominal(); numericToNominal.setInputFormat(data); Instances nominalData = Filter.useFilter(data, numericToNominal); apriori.buildAssociations(nominalData); FastVector[] allTheRules; allTheRules = apriori.getAllTheRules(); for (int i = 0; i < allTheRules.length; i++) { System.out.println(allTheRules[i]); } // BufferedWriter writer = new BufferedWriter(new FileWriter("./output.arff")); // writer.write(nominalData.toString()); // writer.flush(); // writer.close(); } catch (Exception ex) { Logger.getLogger(HelloWeka.class.getName()).log(Level.SEVERE, null, ex); } }
From source file:app.RunApp.java
License:Open Source License
/** * Generates TableModel for attributes/*from www .j ava2 s.c o m*/ * * @param jtable Table * @param dataset Multi-label dataset * @return Generated TableModel */ private TableModel attributesTableModel(JTable jtable, MultiLabelInstances dataset) { DefaultTableModel tableModel = new DefaultTableModel() { @Override public boolean isCellEditable(int row, int column) { //This causes all cells to be not editable return false; } }; tableModel.addColumn("Attribute"); Object[] row = new Object[1]; Instances instances = dataset.getDataSet(); int numLabels = dataset.getNumLabels(); int numAttributes = instances.numAttributes() - numLabels; Attribute att; for (int i = 0; i < numAttributes; i++) { att = instances.attribute(i); if (att.isNumeric()) { row[0] = att.name(); tableModel.addRow(row); } } jtable.setModel(tableModel); return jtable.getModel(); }
From source file:arffcreator.arffFrame.java
private void createActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_createActionPerformed // TODO add your handling code here: FastVector atts;/*from w w w . ja v a 2 s . c om*/ FastVector attsRel; FastVector attVals; FastVector attValsRel; Instances data; Instances dataRel; double[] vals; double[] valsRel; int i; // 1. set up attributes atts = new FastVector(); // - numeric atts.addElement(new Attribute("att1")); // - nominal attVals = new FastVector(); for (i = 0; i < 5; i++) attVals.addElement("val" + (i + 1)); atts.addElement(new Attribute("att2", attVals)); // - string atts.addElement(new Attribute("att3", (FastVector) null)); // - date atts.addElement(new Attribute("att4", "yyyy-MM-dd")); // - relational attsRel = new FastVector(); // -- numeric attsRel.addElement(new Attribute("att5.1")); // -- nominal attValsRel = new FastVector(); for (i = 0; i < 5; i++) attValsRel.addElement("val5." + (i + 1)); attsRel.addElement(new Attribute("att5.2", attValsRel)); dataRel = new Instances("att5", attsRel, 0); atts.addElement(new Attribute("att5", dataRel, 0)); // 2. create Instances object data = new Instances("MyRelation", atts, 0); // 3. fill with data // first instance vals = new double[data.numAttributes()]; // - numeric vals[0] = Math.PI; // - nominal vals[1] = attVals.indexOf("val3"); // - string vals[2] = data.attribute(2).addStringValue("This is a string!"); try { // - date vals[3] = data.attribute(3).parseDate("2015-07-30"); } catch (ParseException ex) { Logger.getLogger(arffFrame.class.getName()).log(Level.SEVERE, null, ex); } // - relational dataRel = new Instances(data.attribute(4).relation(), 0); // -- first instance valsRel = new double[2]; valsRel[0] = Math.PI + 1; valsRel[1] = attValsRel.indexOf("val5.3"); dataRel.add(new Instance(1.0, valsRel)); // -- second instance valsRel = new double[2]; valsRel[0] = Math.PI + 2; valsRel[1] = attValsRel.indexOf("val5.2"); dataRel.add(new Instance(1.0, valsRel)); vals[4] = data.attribute(4).addRelation(dataRel); // add data.add(new Instance(1.0, vals)); // second instance vals = new double[data.numAttributes()]; // important: needs NEW array! // - numeric vals[0] = Math.E; // - nominal vals[1] = attVals.indexOf("val1"); // - string vals[2] = data.attribute(2).addStringValue("And another one!"); try { // - date vals[3] = data.attribute(3).parseDate("2015-07-30"); } catch (ParseException ex) { Logger.getLogger(arffFrame.class.getName()).log(Level.SEVERE, null, ex); } // - relational dataRel = new Instances(data.attribute(4).relation(), 0); // -- first instance valsRel = new double[2]; valsRel[0] = Math.E + 1; valsRel[1] = attValsRel.indexOf("val5.4"); dataRel.add(new Instance(1.0, valsRel)); // -- second instance valsRel = new double[2]; valsRel[0] = Math.E + 2; valsRel[1] = attValsRel.indexOf("val5.1"); dataRel.add(new Instance(1.0, valsRel)); vals[4] = data.attribute(4).addRelation(dataRel); // add data.add(new Instance(1.0, vals)); // 4. output data textArea.append(data.toString()); dataset = data.toString(); }
From source file:asap.CrossValidation.java
/** * * @param dataInput/*from w ww. j a va2 s .co m*/ * @param classIndex * @param removeIndices * @param cls * @param seed * @param folds * @param modelOutputFile * @return * @throws Exception */ public static String performCrossValidation(String dataInput, String classIndex, String removeIndices, AbstractClassifier cls, int seed, int folds, String modelOutputFile) throws Exception { PerformanceCounters.startTimer("cross-validation ST"); PerformanceCounters.startTimer("cross-validation init ST"); // loads data and set class index Instances data = DataSource.read(dataInput); String clsIndex = classIndex; switch (clsIndex) { case "first": data.setClassIndex(0); break; case "last": data.setClassIndex(data.numAttributes() - 1); break; default: try { data.setClassIndex(Integer.parseInt(clsIndex) - 1); } catch (NumberFormatException e) { data.setClassIndex(data.attribute(clsIndex).index()); } break; } Remove removeFilter = new Remove(); removeFilter.setAttributeIndices(removeIndices); removeFilter.setInputFormat(data); data = Filter.useFilter(data, removeFilter); // randomize data Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); if (randData.classAttribute().isNominal()) { randData.stratify(folds); } // perform cross-validation and add predictions Evaluation eval = new Evaluation(randData); Instances trainSets[] = new Instances[folds]; Instances testSets[] = new Instances[folds]; Classifier foldCls[] = new Classifier[folds]; for (int n = 0; n < folds; n++) { trainSets[n] = randData.trainCV(folds, n); testSets[n] = randData.testCV(folds, n); foldCls[n] = AbstractClassifier.makeCopy(cls); } PerformanceCounters.stopTimer("cross-validation init ST"); PerformanceCounters.startTimer("cross-validation folds+train ST"); //paralelize!!:-------------------------------------------------------------- for (int n = 0; n < folds; n++) { Instances train = trainSets[n]; Instances test = testSets[n]; // the above code is used by the StratifiedRemoveFolds filter, the // code below by the Explorer/Experimenter: // Instances train = randData.trainCV(folds, n, rand); // build and evaluate classifier Classifier clsCopy = foldCls[n]; clsCopy.buildClassifier(train); eval.evaluateModel(clsCopy, test); } cls.buildClassifier(data); //until here!----------------------------------------------------------------- PerformanceCounters.stopTimer("cross-validation folds+train ST"); PerformanceCounters.startTimer("cross-validation post ST"); // output evaluation String out = "\n" + "=== Setup ===\n" + "Classifier: " + cls.getClass().getName() + " " + Utils.joinOptions(cls.getOptions()) + "\n" + "Dataset: " + data.relationName() + "\n" + "Folds: " + folds + "\n" + "Seed: " + seed + "\n" + "\n" + eval.toSummaryString("=== " + folds + "-fold Cross-validation ===", false) + "\n"; if (!modelOutputFile.isEmpty()) { SerializationHelper.write(modelOutputFile, cls); } PerformanceCounters.stopTimer("cross-validation post ST"); PerformanceCounters.stopTimer("cross-validation ST"); return out; }
From source file:asap.CrossValidation.java
/** * * @param dataInput/*from w w w .j a v a2s.co m*/ * @param classIndex * @param removeIndices * @param cls * @param seed * @param folds * @param modelOutputFile * @return * @throws Exception */ public static String performCrossValidationMT(String dataInput, String classIndex, String removeIndices, AbstractClassifier cls, int seed, int folds, String modelOutputFile) throws Exception { PerformanceCounters.startTimer("cross-validation MT"); PerformanceCounters.startTimer("cross-validation init MT"); // loads data and set class index Instances data = DataSource.read(dataInput); String clsIndex = classIndex; switch (clsIndex) { case "first": data.setClassIndex(0); break; case "last": data.setClassIndex(data.numAttributes() - 1); break; default: try { data.setClassIndex(Integer.parseInt(clsIndex) - 1); } catch (NumberFormatException e) { data.setClassIndex(data.attribute(clsIndex).index()); } break; } Remove removeFilter = new Remove(); removeFilter.setAttributeIndices(removeIndices); removeFilter.setInputFormat(data); data = Filter.useFilter(data, removeFilter); // randomize data Random rand = new Random(seed); Instances randData = new Instances(data); randData.randomize(rand); if (randData.classAttribute().isNominal()) { randData.stratify(folds); } // perform cross-validation and add predictions Evaluation eval = new Evaluation(randData); List<Thread> foldThreads = (List<Thread>) Collections.synchronizedList(new LinkedList<Thread>()); List<FoldSet> foldSets = (List<FoldSet>) Collections.synchronizedList(new LinkedList<FoldSet>()); for (int n = 0; n < folds; n++) { foldSets.add(new FoldSet(randData.trainCV(folds, n), randData.testCV(folds, n), AbstractClassifier.makeCopy(cls))); if (n < Config.getNumThreads() - 1) { Thread foldThread = new Thread(new CrossValidationFoldThread(n, foldSets, eval)); foldThreads.add(foldThread); } } PerformanceCounters.stopTimer("cross-validation init MT"); PerformanceCounters.startTimer("cross-validation folds+train MT"); //paralelize!!:-------------------------------------------------------------- if (Config.getNumThreads() > 1) { for (Thread foldThread : foldThreads) { foldThread.start(); } } else { //use the current thread to run the cross-validation instead of using the Thread instance created here: new CrossValidationFoldThread(0, foldSets, eval).run(); } cls.buildClassifier(data); for (Thread foldThread : foldThreads) { foldThread.join(); } //until here!----------------------------------------------------------------- PerformanceCounters.stopTimer("cross-validation folds+train MT"); PerformanceCounters.startTimer("cross-validation post MT"); // evaluation for output: String out = "\n" + "=== Setup ===\n" + "Classifier: " + cls.getClass().getName() + " " + Utils.joinOptions(cls.getOptions()) + "\n" + "Dataset: " + data.relationName() + "\n" + "Folds: " + folds + "\n" + "Seed: " + seed + "\n" + "\n" + eval.toSummaryString("=== " + folds + "-fold Cross-validation ===", false) + "\n"; if (!modelOutputFile.isEmpty()) { SerializationHelper.write(modelOutputFile, cls); } PerformanceCounters.stopTimer("cross-validation post MT"); PerformanceCounters.stopTimer("cross-validation MT"); return out; }