Example usage for weka.classifiers.trees J48 J48

List of usage examples for weka.classifiers.trees J48 J48

Introduction

In this page you can find the example usage for weka.classifiers.trees J48 J48.

Prototype

J48

Source Link

Usage

From source file:mulan.classifier.meta.MultiLabelMetaLearner.java

License:Open Source License

/**
 * Creates a new instance of {@link MultiLabelMetaLearner} with default
 * {@link LabelPowerset} multi-label classifier using J48 as the base
 * classifier./*from   w w w. jav a2 s  .co m*/
 * @throws Exception 
 */
public MultiLabelMetaLearner() throws Exception {
    this(new LabelPowerset(new J48()));
}

From source file:mulan.classifier.meta.thresholding.ExampleBasedFMeasureOptimizer.java

License:Open Source License

/**
 * Default constructor
 */
public ExampleBasedFMeasureOptimizer() {
    this(new BinaryRelevance(new J48()));
}

From source file:mulan.classifier.meta.thresholding.MLPTO.java

License:Open Source License

/**
 * Default constructor
 */
public MLPTO() {
    this(new BinaryRelevance(new J48()), new HammingLoss());
}

From source file:mulan.classifier.transformation.Pairwise.java

License:Open Source License

/**
 * Default constructor using J48 as underlying classifier
 */
public Pairwise() {
    this(new J48());
}

From source file:mulan.classifier.transformation.TransformationBasedMultiLabelLearner.java

License:Open Source License

/**
 * Creates a new instance of {@link TransformationBasedMultiLabelLearner} with default
 * {@link J48} base classifier./*from  w  w  w.  j a v a2s  . c  om*/
 */
public TransformationBasedMultiLabelLearner() {
    this(new J48());
}

From source file:mulan.classifier.transformation.TwoStageClassifierChainArchitecture.java

License:Open Source License

/**
 * Default constructor using J48 as underlying classifier
 */
public TwoStageClassifierChainArchitecture() {
    super(new J48());
}

From source file:mulan.classifier.transformation.TwoStagePrunedClassifierChainArchitecture.java

License:Open Source License

/**
 * Default constructor using J48 as underlying classifier
 */
public TwoStagePrunedClassifierChainArchitecture() {
    super(new J48());
}

From source file:mulan.classifier.transformation.TwoStageVotingArchitecture.java

License:Open Source License

/**
 * Default constructor using J48 as underlying classifier
 */
public TwoStageVotingArchitecture() {
    super(new J48());
}

From source file:mulan.examples.GettingPredictionsOnUnlabeledData.java

License:Open Source License

/**
 * Executes this example//from www. j a v a  2 s.com
 *
 * @param args command-line arguments -arff, -xml and -unlabeled
 */
public static void main(String[] args) {

    try {
        String arffFilename = Utils.getOption("arff", args);
        String xmlFilename = Utils.getOption("xml", args);
        System.out.println("Loading the training data set...");
        MultiLabelInstances trainingData = new MultiLabelInstances(arffFilename, xmlFilename);

        RAkEL model = new RAkEL(new LabelPowerset(new J48()));

        System.out.println("Building the model...");
        model.build(trainingData);

        String unlabeledDataFilename = Utils.getOption("unlabeled", args);
        System.out.println("Loading the unlabeled data set...");
        MultiLabelInstances unlabeledData = new MultiLabelInstances(unlabeledDataFilename, xmlFilename);

        int numInstances = unlabeledData.getNumInstances();
        for (int instanceIndex = 0; instanceIndex < numInstances; instanceIndex++) {
            Instance instance = unlabeledData.getDataSet().instance(instanceIndex);
            MultiLabelOutput output = model.makePrediction(instance);
            if (output.hasBipartition()) {
                String bipartion = Arrays.toString(output.getBipartition());
                System.out.println("Predicted bipartion: " + bipartion);
            }
            if (output.hasRanking()) {
                String ranking = Arrays.toString(output.getRanking());
                System.out.println("Predicted ranking: " + ranking);
            }
            if (output.hasConfidences()) {
                String confidences = Arrays.toString(output.getConfidences());
                System.out.println("Predicted confidences: " + confidences);
            }
        }
    } catch (InvalidDataFormatException e) {
        System.err.println(e.getMessage());
    } catch (Exception ex) {
        Logger.getLogger(GettingPredictionsOnUnlabeledData.class.getName()).log(Level.SEVERE, null, ex);
    }
}

From source file:mulan.examples.StoringAndLoadingModels.java

License:Open Source License

public static void main(String[] args) {
    try {/*from w ww  .jav  a 2  s .co  m*/
        String trainingDataFilename = Utils.getOption("train", args);
        String testingDataFilename = Utils.getOption("test", args);
        String labelsFilename = Utils.getOption("labels", args);
        System.out.println("Loading the training data set...");
        MultiLabelInstances trainingData = new MultiLabelInstances(trainingDataFilename, labelsFilename);
        System.out.println("Loading the testing data set...");
        MultiLabelInstances testingData = new MultiLabelInstances(testingDataFilename, labelsFilename);
        BinaryRelevance learner1 = new BinaryRelevance(new J48());

        String modelFilename = Utils.getOption("model", args);
        System.out.println("Building the model...");
        learner1.build(trainingData);

        System.out.println("Storing the model...");
        SerializationHelper.write(modelFilename, learner1);

        System.out.println("Loading the model...");
        BinaryRelevance learner2;
        learner2 = (BinaryRelevance) (MultiLabelLearner) SerializationHelper.read(modelFilename);
        Evaluator evaluator = new Evaluator();
        Evaluation evaluation;
        evaluation = evaluator.evaluate(learner2, testingData);
        System.out.println(evaluation);
    } catch (Exception ex) {
        Logger.getLogger(StoringAndLoadingModels.class.getName()).log(Level.SEVERE, null, ex);
    }
}