Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * GettingPredictionsOnUnlabeledData.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.examples; import java.util.Arrays; import java.util.logging.Level; import java.util.logging.Logger; import mulan.classifier.MultiLabelOutput; import mulan.classifier.meta.RAkEL; import mulan.classifier.transformation.LabelPowerset; import mulan.data.InvalidDataFormatException; import mulan.data.MultiLabelInstances; import weka.classifiers.trees.J48; import weka.core.Instance; import weka.core.Utils; /** * This examples shows how you can retrieve the predictions of a model on * unlabeled data. Unlabeled multi-label datasets should have the same * structure as the training data. The actual values of the labels could be * either unspecified (set to symbol ?), or randomly set to 0/1. * * @author Grigorios Tsoumakas * @version 2010.12.15 */ public class GettingPredictionsOnUnlabeledData { /** * Executes this example * * @param args command-line arguments -arff, -xml and -unlabeled */ public static void main(String[] args) { try { String arffFilename = Utils.getOption("arff", args); String xmlFilename = Utils.getOption("xml", args); System.out.println("Loading the training data set..."); MultiLabelInstances trainingData = new MultiLabelInstances(arffFilename, xmlFilename); RAkEL model = new RAkEL(new LabelPowerset(new J48())); System.out.println("Building the model..."); model.build(trainingData); String unlabeledDataFilename = Utils.getOption("unlabeled", args); System.out.println("Loading the unlabeled data set..."); MultiLabelInstances unlabeledData = new MultiLabelInstances(unlabeledDataFilename, xmlFilename); int numInstances = unlabeledData.getNumInstances(); for (int instanceIndex = 0; instanceIndex < numInstances; instanceIndex++) { Instance instance = unlabeledData.getDataSet().instance(instanceIndex); MultiLabelOutput output = model.makePrediction(instance); if (output.hasBipartition()) { String bipartion = Arrays.toString(output.getBipartition()); System.out.println("Predicted bipartion: " + bipartion); } if (output.hasRanking()) { String ranking = Arrays.toString(output.getRanking()); System.out.println("Predicted ranking: " + ranking); } if (output.hasConfidences()) { String confidences = Arrays.toString(output.getConfidences()); System.out.println("Predicted confidences: " + confidences); } } } catch (InvalidDataFormatException e) { System.err.println(e.getMessage()); } catch (Exception ex) { Logger.getLogger(GettingPredictionsOnUnlabeledData.class.getName()).log(Level.SEVERE, null, ex); } } }