Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * StoringAndLoadingModels.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.examples; import java.util.logging.Level; import java.util.logging.Logger; import mulan.classifier.MultiLabelLearner; import mulan.classifier.transformation.BinaryRelevance; import mulan.data.MultiLabelInstances; import mulan.evaluation.Evaluation; import mulan.evaluation.Evaluator; import weka.classifiers.trees.J48; import weka.core.SerializationHelper; import weka.core.Utils; /** * This example shows how you can store a learned model and load a stored model. * * @author Grigorios Tsoumakas * @version 2010.12.15 */ public class StoringAndLoadingModels { public static void main(String[] args) { try { String trainingDataFilename = Utils.getOption("train", args); String testingDataFilename = Utils.getOption("test", args); String labelsFilename = Utils.getOption("labels", args); System.out.println("Loading the training data set..."); MultiLabelInstances trainingData = new MultiLabelInstances(trainingDataFilename, labelsFilename); System.out.println("Loading the testing data set..."); MultiLabelInstances testingData = new MultiLabelInstances(testingDataFilename, labelsFilename); BinaryRelevance learner1 = new BinaryRelevance(new J48()); String modelFilename = Utils.getOption("model", args); System.out.println("Building the model..."); learner1.build(trainingData); System.out.println("Storing the model..."); SerializationHelper.write(modelFilename, learner1); System.out.println("Loading the model..."); BinaryRelevance learner2; learner2 = (BinaryRelevance) (MultiLabelLearner) SerializationHelper.read(modelFilename); Evaluator evaluator = new Evaluator(); Evaluation evaluation; evaluation = evaluator.evaluate(learner2, testingData); System.out.println(evaluation); } catch (Exception ex) { Logger.getLogger(StoringAndLoadingModels.class.getName()).log(Level.SEVERE, null, ex); } } }