Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * TransformationBasedMultiLabelLearner.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.classifier.transformation; import mulan.classifier.*; import weka.classifiers.Classifier; import weka.classifiers.trees.J48; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; /** * Base class for multi-label learners, which use problem * transformation to handle multi-label data. * * @author Robert Friberg * @author Jozef Vilcek * @version $Revision: 0.02 $ */ @SuppressWarnings("serial") public abstract class TransformationBasedMultiLabelLearner extends MultiLabelLearnerBase { /** * The encapsulated classifier used for making clones in the * case of ensemble classifiers. */ protected final Classifier baseClassifier; /** * Creates a new instance of {@link TransformationBasedMultiLabelLearner} with default * {@link J48} base classifier. */ public TransformationBasedMultiLabelLearner() { this(new J48()); } /** * Creates a new instance. * * @param baseClassifier the base classifier which will be used internally to handle the data. * @see Classifier */ public TransformationBasedMultiLabelLearner(Classifier baseClassifier) { // todo: check if it is not a regressor this.baseClassifier = baseClassifier; } /** * Returns the {@link Classifier} which is used internally by the learner. * * @return the internally used classifier */ public Classifier getBaseClassifier() { return baseClassifier; } public TechnicalInformation getTechnicalInformation() { TechnicalInformation result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Grigorios Tsoumakas, Ioannis Katakis"); result.setValue(Field.YEAR, "2007"); result.setValue(Field.TITLE, "Multi-Label Classification: An Overview"); result.setValue(Field.JOURNAL, "International Journal of Data Warehousing and Mining"); result.setValue(Field.VOLUME, "3(3)"); result.setValue(Field.PAGES, "1-13"); return result; } }