List of usage examples for weka.classifiers.evaluation NominalPrediction NominalPrediction
public NominalPrediction(double actual, double[] distribution, double weight)
From source file:bme.mace.logicdomain.Evaluation.java
License:Open Source License
/** * Evaluates the classifier on a single instance and records the prediction * (if the class is nominal).// w w w .j a v a2 s . c o m * * @param classifier machine learning classifier * @param instance the test instance to be classified * @return the prediction made by the clasifier * @throws Exception if model could not be evaluated successfully or the data * contains string attributes */ public double evaluateModelOnceAndRecordPrediction(List<LibSVM> classifier, List<Double> classifierWeight, Instance instance) throws Exception { Instance classMissing = (Instance) instance.copy(); double pred = 0; classMissing.setDataset(instance.dataset()); classMissing.setClassMissing(); if (m_ClassIsNominal) { if (m_Predictions == null) { m_Predictions = new FastVector(); } List<double[]> prob = new ArrayList<double[]>();// double[] finalProb = new double[instance.numClasses()]; for (int i = 0; i < classifier.size(); i++) { double[] dist = classifier.get(i).distributionForInstance(classMissing);// prob.add(dist); } for (int i = 0; i < finalProb.length; i++) { for (int j = 0; j < classifier.size(); j++) { finalProb[i] += prob.get(j)[i] * classifierWeight.get(j); } } double sum = 0; for (int i = 0; i < finalProb.length; i++) { sum += finalProb[i]; } for (int i = 0; i < finalProb.length; i++) { finalProb[i] = finalProb[i] / sum; } pred = Utils.maxIndex(finalProb); if (finalProb[(int) pred] <= 0) { pred = Instance.missingValue(); } updateStatsForClassifier(finalProb, instance); m_Predictions.addElement(new NominalPrediction(instance.classValue(), finalProb, instance.weight())); } else { pred = classifier.get(0).classifyInstance(classMissing); updateStatsForPredictor(pred, instance); } return pred; }
From source file:bme.mace.logicdomain.Evaluation.java
License:Open Source License
/** * Evaluates the supplied distribution on a single instance. * //from www .ja v a 2 s . c o m * @param dist the supplied distribution * @param instance the test instance to be classified * @return the prediction * @throws Exception if model could not be evaluated successfully */ public double evaluateModelOnceAndRecordPrediction(double[] dist, Instance instance) throws Exception { double pred; if (m_ClassIsNominal) { if (m_Predictions == null) { m_Predictions = new FastVector(); } pred = Utils.maxIndex(dist); if (dist[(int) pred] <= 0) { pred = Instance.missingValue(); } updateStatsForClassifier(dist, instance); m_Predictions.addElement(new NominalPrediction(instance.classValue(), dist, instance.weight())); } else { pred = dist[0]; updateStatsForPredictor(pred, instance); } return pred; }
From source file:com.evaluation.ConfidenceLabelBasedMeasures.java
License:Open Source License
private void computeMeasures(MultiLabelOutput[] output, boolean[][] trueLabels) { int numLabels = trueLabels[0].length; // AUC/*from w w w . j a va 2s . c o m*/ FastVector[] m_Predictions = new FastVector[numLabels]; for (int j = 0; j < numLabels; j++) m_Predictions[j] = new FastVector(); FastVector all_Predictions = new FastVector(); int numInstances = output.length; for (int instanceIndex = 0; instanceIndex < numInstances; instanceIndex++) { double[] confidences = output[instanceIndex].getConfidences(); for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) { int classValue; boolean actual = trueLabels[instanceIndex][labelIndex]; if (actual) classValue = 1; else classValue = 0; double[] dist = new double[2]; dist[1] = confidences[labelIndex]; dist[0] = 1 - dist[1]; m_Predictions[labelIndex].addElement(new NominalPrediction(classValue, dist, 1)); all_Predictions.addElement(new NominalPrediction(classValue, dist, 1)); } } labelAUC = new double[numLabels]; for (int i = 0; i < numLabels; i++) { ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(m_Predictions[i], 1); labelAUC[i] = ThresholdCurve.getROCArea(result); } auc[Averaging.MACRO.ordinal()] = Utils.mean(labelAUC); ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(all_Predictions, 1); auc[Averaging.MICRO.ordinal()] = ThresholdCurve.getROCArea(result); }
From source file:cotraining.copy.Evaluation_D.java
License:Open Source License
/** * Evaluates the classifier on a single instance and records the * prediction (if the class is nominal). * * @param classifier machine learning classifier * @param instance the test instance to be classified * @return the prediction made by the clasifier * @throws Exception if model could not be evaluated * successfully or the data contains string attributes *//* www .j a v a 2s . c o m*/ public double evaluateModelOnceAndRecordPrediction(Classifier classifier, Instance instance) throws Exception { Instance classMissing = (Instance) instance.copy(); double pred = 0; classMissing.setDataset(instance.dataset()); classMissing.setClassMissing(); if (m_ClassIsNominal) { if (m_Predictions == null) { m_Predictions = new FastVector(); } double[] dist = classifier.distributionForInstance(classMissing); pred = Utils.maxIndex(dist); if (dist[(int) pred] <= 0) { pred = Instance.missingValue(); } updateStatsForClassifier(dist, instance); m_Predictions.addElement(new NominalPrediction(instance.classValue(), dist, instance.weight())); } else { pred = classifier.classifyInstance(classMissing); updateStatsForPredictor(pred, instance); } return pred; }
From source file:mulan.evaluation.measure.LabelBasedAUC.java
License:Open Source License
protected void updateConfidence(double[] confidences, boolean[] truth) { for (int labelIndex = 0; labelIndex < numOfLabels; labelIndex++) { int classValue; boolean actual = truth[labelIndex]; if (actual) { classValue = 1;//from w ww . ja v a2s. c o m } else { classValue = 0; } double[] dist = new double[2]; dist[1] = confidences[labelIndex]; dist[0] = 1 - dist[1]; m_Predictions[labelIndex].addElement(new NominalPrediction(classValue, dist, 1)); all_Predictions.addElement(new NominalPrediction(classValue, dist, 1)); } }