bme.mace.logicdomain.Evaluation.java Source code

Java tutorial

Introduction

Here is the source code for bme.mace.logicdomain.Evaluation.java

Source

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    Evaluation.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package bme.mace.logicdomain;

import java.beans.BeanInfo;
import java.beans.Introspector;
import java.beans.MethodDescriptor;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Reader;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Date;
import java.util.Enumeration;
import java.util.List;
import java.util.Random;
import weka.classifiers.Classifier;
import weka.classifiers.CostMatrix;
import weka.classifiers.Sourcable;
import weka.classifiers.evaluation.NominalPrediction;
import weka.classifiers.evaluation.ThresholdCurve;
import weka.classifiers.functions.LibSVM;
import weka.core.Drawable;
import weka.core.FastVector;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.Range;
import weka.core.RevisionHandler;
import weka.core.RevisionUtils;
import weka.core.Summarizable;
import weka.core.Utils;
import weka.core.Version;
import weka.core.converters.ConverterUtils.DataSource;
import weka.estimators.Estimator;
import weka.estimators.KernelEstimator;

/**
 * Class for evaluating machine learning models.
 * <p/>
 * 
 * -------------------------------------------------------------------
 * <p/>
 * 
 * General options when evaluating a learning scheme from the command-line:
 * <p/>
 * 
 * -t filename <br/>
 * Name of the file with the training data. (required)
 * <p/>
 * 
 * -T filename <br/>
 * Name of the file with the test data. If missing a cross-validation is
 * performed.
 * <p/>
 * 
 * -c index <br/>
 * Index of the class attribute (1, 2, ...; default: last).
 * <p/>
 * 
 * -x number <br/>
 * The number of folds for the cross-validation (default: 10).
 * <p/>
 * 
 * -no-cv <br/>
 * No cross validation. If no test file is provided, no evaluation is done.
 * <p/>
 * 
 * -split-percentage percentage <br/>
 * Sets the percentage for the train/test set split, e.g., 66.
 * <p/>
 * 
 * -preserve-order <br/>
 * Preserves the order in the percentage split instead of randomizing the data
 * first with the seed value ('-s').
 * <p/>
 * 
 * -s seed <br/>
 * Random number seed for the cross-validation and percentage split (default:
 * 1).
 * <p/>
 * 
 * -m filename <br/>
 * The name of a file containing a cost matrix.
 * <p/>
 * 
 * -l filename <br/>
 * Loads classifier from the given file. In case the filename ends with ".xml",
 * a PMML file is loaded or, if that fails, options are loaded from XML.
 * <p/>
 * 
 * -d filename <br/>
 * Saves classifier built from the training data into the given file. In case
 * the filename ends with ".xml" the options are saved XML, not the model.
 * <p/>
 * 
 * -v <br/>
 * Outputs no statistics for the training data.
 * <p/>
 * 
 * -o <br/>
 * Outputs statistics only, not the classifier.
 * <p/>
 * 
 * -i <br/>
 * Outputs information-retrieval statistics per class.
 * <p/>
 * 
 * -k <br/>
 * Outputs information-theoretic statistics.
 * <p/>
 * 
 * -p range <br/>
 * Outputs predictions for test instances (or the train instances if no test
 * instances provided and -no-cv is used), along with the attributes in the
 * specified range (and nothing else). Use '-p 0' if no attributes are desired.
 * <p/>
 * 
 * -distribution <br/>
 * Outputs the distribution instead of only the prediction in conjunction with
 * the '-p' option (only nominal classes).
 * <p/>
 * 
 * -r <br/>
 * Outputs cumulative margin distribution (and nothing else).
 * <p/>
 * 
 * -g <br/>
 * Only for classifiers that implement "Graphable." Outputs the graph
 * representation of the classifier (and nothing else).
 * <p/>
 * 
 * -xml filename | xml-string <br/>
 * Retrieves the options from the XML-data instead of the command line.
 * <p/>
 * 
 * -threshold-file file <br/>
 * The file to save the threshold data to. The format is determined by the
 * extensions, e.g., '.arff' for ARFF format or '.csv' for CSV.
 * <p/>
 * 
 * -threshold-label label <br/>
 * The class label to determine the threshold data for (default is the first
 * label)
 * <p/>
 * 
 * -------------------------------------------------------------------
 * <p/>
 * 
 * Example usage as the main of a classifier (called FunkyClassifier):
 * <code> <pre>
 * public static void main(String [] args) {
 *   runClassifier(new FunkyClassifier(), args);
 * }
 * </pre> </code>
 * <p/>
 * 
 * ------------------------------------------------------------------
 * <p/>
 * 
 * Example usage from within an application: <code> <pre>
 * Instances trainInstances = ... instances got from somewhere
 * Instances testInstances = ... instances got from somewhere
 * Classifier scheme = ... scheme got from somewhere
 * 
 * Evaluation evaluation = new Evaluation(trainInstances);
 * evaluation.evaluateModel(scheme, testInstances);
 * System.out.println(evaluation.toSummaryString());
 * </pre> </code>
 * 
 * 
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author Len Trigg (trigg@cs.waikato.ac.nz)
 * @version $Revision: 10974 $
 */
public class Evaluation implements Summarizable, RevisionHandler {

    /** The number of classes. */
    protected int m_NumClasses;

    /** The number of folds for a cross-validation. */
    protected int m_NumFolds;

    /** The weight of all incorrectly classified instances. */
    protected double m_Incorrect;

    /** The weight of all correctly classified instances. */
    protected double m_Correct;

    /** The weight of all unclassified instances. */
    protected double m_Unclassified;

    /*** The weight of all instances that had no class assigned to them. */
    protected double m_MissingClass;

    /** The weight of all instances that had a class assigned to them. */
    protected double m_WithClass;

    /** Array for storing the confusion matrix. */
    protected double[][] m_ConfusionMatrix;

    /** The names of the classes. */
    protected String[] m_ClassNames;

    /** Is the class nominal or numeric? */
    protected boolean m_ClassIsNominal;

    /** The prior probabilities of the classes */
    protected double[] m_ClassPriors;

    /** The sum of counts for priors */
    protected double m_ClassPriorsSum;

    /** The cost matrix (if given). */
    protected CostMatrix m_CostMatrix;

    /** The total cost of predictions (includes instance weights) */
    protected double m_TotalCost;

    /** Sum of errors. */
    protected double m_SumErr;

    /** Sum of absolute errors. */
    protected double m_SumAbsErr;

    /** Sum of squared errors. */
    protected double m_SumSqrErr;

    /** Sum of class values. */
    protected double m_SumClass;

    /** Sum of squared class values. */
    protected double m_SumSqrClass;

    /*** Sum of predicted values. */
    protected double m_SumPredicted;

    /** Sum of squared predicted values. */
    protected double m_SumSqrPredicted;

    /** Sum of predicted * class values. */
    protected double m_SumClassPredicted;

    /** Sum of absolute errors of the prior */
    protected double m_SumPriorAbsErr;

    /** Sum of absolute errors of the prior */
    protected double m_SumPriorSqrErr;

    /** Total Kononenko & Bratko Information */
    protected double m_SumKBInfo;

    /*** Resolution of the margin histogram */
    protected static int k_MarginResolution = 500;

    /** Cumulative margin distribution */
    protected double m_MarginCounts[];

    /** Number of non-missing class training instances seen */
    protected int m_NumTrainClassVals;

    /** Array containing all numeric training class values seen */
    protected double[] m_TrainClassVals;

    /** Array containing all numeric training class weights */
    protected double[] m_TrainClassWeights;

    /** Numeric class error estimator for prior */
    protected Estimator m_PriorErrorEstimator;

    /** Numeric class error estimator for scheme */
    protected Estimator m_ErrorEstimator;

    /**
     * The minimum probablility accepted from an estimator to avoid taking log(0)
     * in Sf calculations.
     */
    protected static final double MIN_SF_PROB = Double.MIN_VALUE;

    /** Total entropy of prior predictions */
    protected double m_SumPriorEntropy;

    /** Total entropy of scheme predictions */
    protected double m_SumSchemeEntropy;

    /** The list of predictions that have been generated (for computing AUC) */
    public FastVector m_Predictions;

    /**
     * enables/disables the use of priors, e.g., if no training set is present in
     * case of de-serialized schemes
     */
    protected boolean m_NoPriors = false;

    /**
     * Initializes all the counters for the evaluation. Use
     * <code>useNoPriors()</code> if the dataset is the test set and you can't
     * initialize with the priors from the training set via
     * <code>setPriors(Instances)</code>.
     * 
     * @param data set of training instances, to get some header information and
     *          prior class distribution information
     * @throws Exception if the class is not defined
     * @see #useNoPriors()
     * @see #setPriors(Instances)
     */
    public Evaluation(Instances data) throws Exception {

        this(data, null);
    }

    /**
     * Initializes all the counters for the evaluation and also takes a cost
     * matrix as parameter. Use <code>useNoPriors()</code> if the dataset is the
     * test set and you can't initialize with the priors from the training set via
     * <code>setPriors(Instances)</code>.
     * 
     * @param data set of training instances, to get some header information and
     *          prior class distribution information
     * @param costMatrix the cost matrix---if null, default costs will be used
     * @throws Exception if cost matrix is not compatible with data, the class is
     *           not defined or the class is numeric
     * @see #useNoPriors()
     * @see #setPriors(Instances)
     */
    public Evaluation(Instances data, CostMatrix costMatrix) throws Exception {

        m_NumClasses = data.numClasses();
        m_NumFolds = 1;
        m_ClassIsNominal = data.classAttribute().isNominal();

        if (m_ClassIsNominal) {
            m_ConfusionMatrix = new double[m_NumClasses][m_NumClasses];
            m_ClassNames = new String[m_NumClasses];
            for (int i = 0; i < m_NumClasses; i++) {
                m_ClassNames[i] = data.classAttribute().value(i);
            }
        }
        m_CostMatrix = costMatrix;
        if (m_CostMatrix != null) {
            if (!m_ClassIsNominal) {
                throw new Exception("Class has to be nominal if cost matrix " + "given!");
            }
            if (m_CostMatrix.size() != m_NumClasses) {
                throw new Exception("Cost matrix not compatible with data!");
            }
        }
        m_ClassPriors = new double[m_NumClasses];
        setPriors(data);
        m_MarginCounts = new double[k_MarginResolution + 1];
    }

    /**
     * Returns the area under ROC for those predictions that have been collected
     * in the evaluateClassifier(Classifier, Instances) method. Returns
     * Instance.missingValue() if the area is not available.
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the area under the ROC curve or not a number
     */
    public double areaUnderROC(int classIndex) {

        // Check if any predictions have been collected
        if (m_Predictions == null) {
            return Instance.missingValue();
        } else {
            ThresholdCurve tc = new ThresholdCurve();
            Instances result = tc.getCurve(m_Predictions, classIndex);
            double rocArea = ThresholdCurve.getROCArea(result);
            if (rocArea < 0.5) {
                rocArea = 1 - rocArea;
            }

            int tpIndex = result.attribute(ThresholdCurve.TP_RATE_NAME).index();
            int fpIndex = result.attribute(ThresholdCurve.FP_RATE_NAME).index();
            double[] tpRate = result.attributeToDoubleArray(tpIndex);
            double[] fpRate = result.attributeToDoubleArray(fpIndex);

            try {
                FileWriter fw;
                if (classIndex == 0)
                    fw = new FileWriter("C://1.csv", true);
                else
                    fw = new FileWriter("C://1.csv", true);

                BufferedWriter bw = new BufferedWriter(fw);
                int length = fpRate.length;
                for (int i = 255; i >= 0; i--) {

                    int index = i * (length - 1) / 255;
                    bw.write(fpRate[index] + ",");
                }
                bw.write("\n");
                for (int i = 255; i >= 0; i--) {
                    int index = i * (length - 1) / 255;
                    bw.write(tpRate[index] + ",");
                }
                bw.write("\n");

                bw.close();
                fw.close();
            } catch (IOException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }

            return rocArea;
        }
    }

    /**
     * Calculates the weighted (by class size) AUC.
     * 
     * @return the weighted AUC.
     */
    public double weightedAreaUnderROC() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double aucTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = areaUnderROC(i);
            if (temp < 0.5) {
                temp = 1 - temp;
            }
            if (!Instance.isMissingValue(temp)) {
                aucTotal += (temp * classCounts[i]);
            }
        }

        return aucTotal / classCountSum;
    }

    /**
     * Returns a copy of the confusion matrix.
     * 
     * @return a copy of the confusion matrix as a two-dimensional array
     */
    public double[][] confusionMatrix() {

        double[][] newMatrix = new double[m_ConfusionMatrix.length][0];

        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            newMatrix[i] = new double[m_ConfusionMatrix[i].length];
            System.arraycopy(m_ConfusionMatrix[i], 0, newMatrix[i], 0, m_ConfusionMatrix[i].length);
        }
        return newMatrix;
    }

    /**
     * Performs a (stratified if class is nominal) cross-validation for a
     * classifier on a set of instances. Now performs a deep copy of the
     * classifier before each call to buildClassifier() (just in case the
     * classifier is not initialized properly).
     * 
     * @param classifier the classifier with any options set.
     * @param data the data on which the cross-validation is to be performed
     * @param numFolds the number of folds for the cross-validation
     * @param random random number generator for randomization
     * @param forPredictionsString varargs parameter that, if supplied, is
     *          expected to hold a StringBuffer to print predictions to, a Range
     *          of attributes to output and a Boolean (true if the distribution is
     *          to be printed)
     * @throws Exception if a classifier could not be generated successfully or
     *           the class is not defined
     */
    public void crossValidateModel(Classifier classifier, Instances data, int numFolds, Random random,
            Object... forPredictionsPrinting) throws Exception {

    }

    /**
     * Performs a (stratified if class is nominal) cross-validation for a
     * classifier on a set of instances.
     * 
     * @param classifierString a string naming the class of the classifier
     * @param data the data on which the cross-validation is to be performed
     * @param numFolds the number of folds for the cross-validation
     * @param options the options to the classifier. Any options
     * @param random the random number generator for randomizing the data accepted
     *          by the classifier will be removed from this array.
     * @throws Exception if a classifier could not be generated successfully or
     *           the class is not defined
     */
    public void idateModel(String classifierString, Instances data, int numFolds, String[] options, Random random)
            throws Exception {

        crossValidateModel(Classifier.forName(classifierString, options), data, numFolds, random);
    }

    /**
     * Evaluates a classifier with the options given in an array of strings.
     * <p/>
     * 
     * Valid options are:
     * <p/>
     * 
     * -t filename <br/>
     * Name of the file with the training data. (required)
     * <p/>
     * 
     * -T filename <br/>
     * Name of the file with the test data. If missing a cross-validation is
     * performed.
     * <p/>
     * 
     * -c index <br/>
     * Index of the class attribute (1, 2, ...; default: last).
     * <p/>
     * 
     * -x number <br/>
     * The number of folds for the cross-validation (default: 10).
     * <p/>
     * 
     * -no-cv <br/>
     * No cross validation. If no test file is provided, no evaluation is done.
     * <p/>
     * 
     * -split-percentage percentage <br/>
     * Sets the percentage for the train/test set split, e.g., 66.
     * <p/>
     * 
     * -preserve-order <br/>
     * Preserves the order in the percentage split instead of randomizing the data
     * first with the seed value ('-s').
     * <p/>
     * 
     * -s seed <br/>
     * Random number seed for the cross-validation and percentage split (default:
     * 1).
     * <p/>
     * 
     * -m filename <br/>
     * The name of a file containing a cost matrix.
     * <p/>
     * 
     * -l filename <br/>
     * Loads classifier from the given file. In case the filename ends with
     * ".xml",a PMML file is loaded or, if that fails, options are loaded from
     * XML.
     * <p/>
     * 
     * -d filename <br/>
     * Saves classifier built from the training data into the given file. In case
     * the filename ends with ".xml" the options are saved XML, not the model.
     * <p/>
     * 
     * -v <br/>
     * Outputs no statistics for the training data.
     * <p/>
     * 
     * -o <br/>
     * Outputs statistics only, not the classifier.
     * <p/>
     * 
     * -i <br/>
     * Outputs detailed information-retrieval statistics per class.
     * <p/>
     * 
     * -k <br/>
     * Outputs information-theoretic statistics.
     * <p/>
     * 
     * -p range <br/>
     * Outputs predictions for test instances (or the train instances if no test
     * instances provided and -no-cv is used), along with the attributes in the
     * specified range (and nothing else). Use '-p 0' if no attributes are
     * desired.
     * <p/>
     * 
     * -distribution <br/>
     * Outputs the distribution instead of only the prediction in conjunction with
     * the '-p' option (only nominal classes).
     * <p/>
     * 
     * -r <br/>
     * Outputs cumulative margin distribution (and nothing else).
     * <p/>
     * 
     * -g <br/>
     * Only for classifiers that implement "Graphable." Outputs the graph
     * representation of the classifier (and nothing else).
     * <p/>
     * 
     * -xml filename | xml-string <br/>
     * Retrieves the options from the XML-data instead of the command line.
     * <p/>
     * 
     * -threshold-file file <br/>
     * The file to save the threshold data to. The format is determined by the
     * extensions, e.g., '.arff' for ARFF format or '.csv' for CSV.
     * <p/>
     * 
     * -threshold-label label <br/>
     * The class label to determine the threshold data for (default is the first
     * label)
     * <p/>
     * 
     * @param classifierString class of machine learning classifier as a string
     * @param options the array of string containing the options
     * @throws Exception if model could not be evaluated successfully
     * @return a string describing the results
     */
    public static void evaluateModel(String classifierString, String[] options) throws Exception {

    }

    /**
     * A test method for this class. Just extracts the first command line argument
     * as a classifier class name and calls evaluateModel.
     * 
     * @param args an array of command line arguments, the first of which must be
     *          the class name of a classifier.
     */
    public static void main(String[] args) {

    }

    /**
     * Evaluates a classifier with the options given in an array of strings.
     * <p/>
     * 
     * Valid options are:
     * <p/>
     * 
     * -t name of training file <br/>
     * Name of the file with the training data. (required)
     * <p/>
     * 
     * -T name of test file <br/>
     * Name of the file with the test data. If missing a cross-validation is
     * performed.
     * <p/>
     * 
     * -c class index <br/>
     * Index of the class attribute (1, 2, ...; default: last).
     * <p/>
     * 
     * -x number of folds <br/>
     * The number of folds for the cross-validation (default: 10).
     * <p/>
     * 
     * -no-cv <br/>
     * No cross validation. If no test file is provided, no evaluation is done.
     * <p/>
     * 
     * -split-percentage percentage <br/>
     * Sets the percentage for the train/test set split, e.g., 66.
     * <p/>
     * 
     * -preserve-order <br/>
     * Preserves the order in the percentage split instead of randomizing the data
     * first with the seed value ('-s').
     * <p/>
     * 
     * -s seed <br/>
     * Random number seed for the cross-validation and percentage split (default:
     * 1).
     * <p/>
     * 
     * -m file with cost matrix <br/>
     * The name of a file containing a cost matrix.
     * <p/>
     * 
     * -l filename <br/>
     * Loads classifier from the given file. In case the filename ends with
     * ".xml",a PMML file is loaded or, if that fails, options are loaded from
     * XML.
     * <p/>
     * 
     * -d filename <br/>
     * Saves classifier built from the training data into the given file. In case
     * the filename ends with ".xml" the options are saved XML, not the model.
     * <p/>
     * 
     * -v <br/>
     * Outputs no statistics for the training data.
     * <p/>
     * 
     * -o <br/>
     * Outputs statistics only, not the classifier.
     * <p/>
     * 
     * -i <br/>
     * Outputs detailed information-retrieval statistics per class.
     * <p/>
     * 
     * -k <br/>
     * Outputs information-theoretic statistics.
     * <p/>
     * 
     * -p range <br/>
     * Outputs predictions for test instances (or the train instances if no test
     * instances provided and -no-cv is used), along with the attributes in the
     * specified range (and nothing else). Use '-p 0' if no attributes are
     * desired.
     * <p/>
     * 
     * -distribution <br/>
     * Outputs the distribution instead of only the prediction in conjunction with
     * the '-p' option (only nominal classes).
     * <p/>
     * 
     * -r <br/>
     * Outputs cumulative margin distribution (and nothing else).
     * <p/>
     * 
     * -g <br/>
     * Only for classifiers that implement "Graphable." Outputs the graph
     * representation of the classifier (and nothing else).
     * <p/>
     * 
     * -xml filename | xml-string <br/>
     * Retrieves the options from the XML-data instead of the command line.
     * <p/>
     * 
     * @param classifier machine learning classifier
     * @param options the array of string containing the options
     * @throws Exception if model could not be evaluated successfully
     * @return a string describing the results
     */
    public static void evaluateModel(Classifier classifier, String[] options) throws Exception {

    }

    /**
     * Attempts to load a cost matrix.
     * 
     * @param costFileName the filename of the cost matrix
     * @param numClasses the number of classes that should be in the cost matrix
     *          (only used if the cost file is in old format).
     * @return a <code>CostMatrix</code> value, or null if costFileName is empty
     * @throws Exception if an error occurs.
     */
    protected static CostMatrix handleCostOption(String costFileName, int numClasses) throws Exception {

        if ((costFileName != null) && (costFileName.length() != 0)) {
            System.out.println("NOTE: The behaviour of the -m option has changed between WEKA 3.0"
                    + " and WEKA 3.1. -m now carries out cost-sensitive *evaluation*"
                    + " only. For cost-sensitive *prediction*, use one of the"
                    + " cost-sensitive metaschemes such as" + " weka.classifiers.meta.CostSensitiveClassifier or"
                    + " weka.classifiers.meta.MetaCost");

            Reader costReader = null;
            try {
                costReader = new BufferedReader(new FileReader(costFileName));
            } catch (Exception e) {
                throw new Exception("Can't open file " + e.getMessage() + '.');
            }
            try {
                // First try as a proper cost matrix format
                return new CostMatrix(costReader);
            } catch (Exception ex) {
                try {
                    // Now try as the poxy old format :-)
                    // System.err.println("Attempting to read old format cost file");
                    try {
                        costReader.close(); // Close the old one
                        costReader = new BufferedReader(new FileReader(costFileName));
                    } catch (Exception e) {
                        throw new Exception("Can't open file " + e.getMessage() + '.');
                    }
                    CostMatrix costMatrix = new CostMatrix(numClasses);
                    // System.err.println("Created default cost matrix");
                    costMatrix.readOldFormat(costReader);
                    return costMatrix;
                    // System.err.println("Read old format");
                } catch (Exception e2) {
                    // re-throw the original exception
                    // System.err.println("Re-throwing original exception");
                    throw ex;
                }
            }
        } else {
            return null;
        }
    }

    /**
     * Evaluates the classifier on a given set of instances. Note that the data
     * must have exactly the same format (e.g. order of attributes) as the data
     * used to train the classifier! Otherwise the results will generally be
     * meaningless.
     * 
     * @param classifier machine learning classifier
     * @param data set of test instances for evaluation
     * @param forPredictionsString varargs parameter that, if supplied, is
     *          expected to hold a StringBuffer to print predictions to, a Range
     *          of attributes to output and a Boolean (true if the distribution is
     *          to be printed)
     * @return the predictions
     * @throws Exception if model could not be evaluated successfully
     */
    public double[] evaluateModel(List<LibSVM> classifier, List<Double> classifierWeight, Instances data,
            Object... forPredictionsPrinting) throws Exception {
        // for predictions printing
        StringBuffer buff = null;
        Range attsToOutput = null;
        boolean printDist = false;

        double predictions[] = new double[data.numInstances()];

        if (forPredictionsPrinting.length > 0) {
            buff = (StringBuffer) forPredictionsPrinting[0];
            attsToOutput = (Range) forPredictionsPrinting[1];
            printDist = ((Boolean) forPredictionsPrinting[2]).booleanValue();
        }

        // Need to be able to collect predictions if appropriate (for AUC)

        for (int i = 0; i < data.numInstances(); i++) {
            predictions[i] = evaluateModelOnceAndRecordPrediction(classifier, classifierWeight, data.instance(i));

        }
        for (int i = 0; i < predictions.length; i++) {
            System.out.print(predictions[i]);
        }
        return predictions;
    }

    public double evaluateModel(List<LibSVM> classifier, List<Double> classifierWeight, Instance data)
            throws Exception {

        // Need to be able to collect predictions if appropriate (for AUC)

        double predictions = evaluateModelOnceAndRecordPrediction(classifier, classifierWeight, data);

        return predictions;
    }

    /**
     * Evaluates the classifier on a single instance and records the prediction
     * (if the class is nominal).
     * 
     * @param classifier machine learning classifier
     * @param instance the test instance to be classified
     * @return the prediction made by the clasifier
     * @throws Exception if model could not be evaluated successfully or the data
     *           contains string attributes
     */
    public double evaluateModelOnceAndRecordPrediction(List<LibSVM> classifier, List<Double> classifierWeight,
            Instance instance) throws Exception {
        Instance classMissing = (Instance) instance.copy();
        double pred = 0;
        classMissing.setDataset(instance.dataset());
        classMissing.setClassMissing();
        if (m_ClassIsNominal) {
            if (m_Predictions == null) {
                m_Predictions = new FastVector();
            }
            List<double[]> prob = new ArrayList<double[]>();//
            double[] finalProb = new double[instance.numClasses()];
            for (int i = 0; i < classifier.size(); i++) {
                double[] dist = classifier.get(i).distributionForInstance(classMissing);//
                prob.add(dist);
            }
            for (int i = 0; i < finalProb.length; i++) {
                for (int j = 0; j < classifier.size(); j++) {
                    finalProb[i] += prob.get(j)[i] * classifierWeight.get(j);
                }
            }
            double sum = 0;
            for (int i = 0; i < finalProb.length; i++) {
                sum += finalProb[i];
            }
            for (int i = 0; i < finalProb.length; i++) {
                finalProb[i] = finalProb[i] / sum;
            }
            pred = Utils.maxIndex(finalProb);
            if (finalProb[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(finalProb, instance);
            m_Predictions.addElement(new NominalPrediction(instance.classValue(), finalProb, instance.weight()));
        } else {

            pred = classifier.get(0).classifyInstance(classMissing);
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the classifier on a single instance.
     * 
     * @param classifier machine learning classifier
     * @param instance the test instance to be classified
     * @return the prediction made by the clasifier
     * @throws Exception if model could not be evaluated successfully or the data
     *           contains string attributes
     */
    public double evaluateModelOnce(Classifier classifier, Instance instance) throws Exception {

        Instance classMissing = (Instance) instance.copy();
        double pred = 0;
        classMissing.setDataset(instance.dataset());
        classMissing.setClassMissing();
        if (m_ClassIsNominal) {
            double[] dist = classifier.distributionForInstance(classMissing);
            pred = Utils.maxIndex(dist);
            if (dist[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(dist, instance);
        } else {
            pred = classifier.classifyInstance(classMissing);
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the supplied distribution on a single instance.
     * 
     * @param dist the supplied distribution
     * @param instance the test instance to be classified
     * @return the prediction
     * @throws Exception if model could not be evaluated successfully
     */
    public double evaluateModelOnce(double[] dist, Instance instance) throws Exception {
        double pred;
        if (m_ClassIsNominal) {
            pred = Utils.maxIndex(dist);
            if (dist[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(dist, instance);
        } else {
            pred = dist[0];
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the supplied distribution on a single instance.
     * 
     * @param dist the supplied distribution
     * @param instance the test instance to be classified
     * @return the prediction
     * @throws Exception if model could not be evaluated successfully
     */
    public double evaluateModelOnceAndRecordPrediction(double[] dist, Instance instance) throws Exception {
        double pred;
        if (m_ClassIsNominal) {
            if (m_Predictions == null) {
                m_Predictions = new FastVector();
            }
            pred = Utils.maxIndex(dist);
            if (dist[(int) pred] <= 0) {
                pred = Instance.missingValue();
            }
            updateStatsForClassifier(dist, instance);
            m_Predictions.addElement(new NominalPrediction(instance.classValue(), dist, instance.weight()));
        } else {
            pred = dist[0];
            updateStatsForPredictor(pred, instance);
        }
        return pred;
    }

    /**
     * Evaluates the supplied prediction on a single instance.
     * 
     * @param prediction the supplied prediction
     * @param instance the test instance to be classified
     * @throws Exception if model could not be evaluated successfully
     */
    public void evaluateModelOnce(double prediction, Instance instance) throws Exception {

        if (m_ClassIsNominal) {
            updateStatsForClassifier(makeDistribution(prediction), instance);
        } else {
            updateStatsForPredictor(prediction, instance);
        }
    }

    /**
     * Returns the predictions that have been collected.
     * 
     * @return a reference to the FastVector containing the predictions that have
     *         been collected. This should be null if no predictions have been
     *         collected (e.g. if the class is numeric).
     */
    public FastVector predictions() {

        return m_Predictions;
    }

    /**
     * Wraps a static classifier in enough source to test using the weka class
     * libraries.
     * 
     * @param classifier a Sourcable Classifier
     * @param className the name to give to the source code class
     * @return the source for a static classifier that can be tested with weka
     *         libraries.
     * @throws Exception if code-generation fails
     */
    public static String wekaStaticWrapper(Sourcable classifier, String className) throws Exception {

        StringBuffer result = new StringBuffer();
        String staticClassifier = classifier.toSource(className);

        result.append("// Generated with Weka " + Version.VERSION + "\n");
        result.append("//\n");
        result.append("// This code is public domain and comes with no warranty.\n");
        result.append("//\n");
        result.append("// Timestamp: " + new Date() + "\n");
        result.append("\n");
        result.append("package weka.classifiers;\n");
        result.append("\n");
        result.append("import weka.core.Attribute;\n");
        result.append("import weka.core.Capabilities;\n");
        result.append("import weka.core.Capabilities.Capability;\n");
        result.append("import weka.core.Instance;\n");
        result.append("import weka.core.Instances;\n");
        result.append("import weka.core.RevisionUtils;\n");
        result.append("import weka.classifiers.Classifier;\n");
        result.append("\n");
        result.append("public class WekaWrapper\n");
        result.append("  extends Classifier {\n");

        // globalInfo
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Returns only the toString() method.\n");
        result.append("   *\n");
        result.append("   * @return a string describing the classifier\n");
        result.append("   */\n");
        result.append("  public String globalInfo() {\n");
        result.append("    return toString();\n");
        result.append("  }\n");

        // getCapabilities
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Returns the capabilities of this classifier.\n");
        result.append("   *\n");
        result.append("   * @return the capabilities\n");
        result.append("   */\n");
        result.append("  public Capabilities getCapabilities() {\n");
        result.append(((Classifier) classifier).getCapabilities().toSource("result", 4));
        result.append("    return result;\n");
        result.append("  }\n");

        // buildClassifier
        result.append("\n");
        result.append("  /**\n");
        result.append("   * only checks the data against its capabilities.\n");
        result.append("   *\n");
        result.append("   * @param i the training data\n");
        result.append("   */\n");
        result.append("  public void buildClassifier(Instances i) throws Exception {\n");
        result.append("    // can classifier handle the data?\n");
        result.append("    getCapabilities().testWithFail(i);\n");
        result.append("  }\n");

        // classifyInstance
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Classifies the given instance.\n");
        result.append("   *\n");
        result.append("   * @param i the instance to classify\n");
        result.append("   * @return the classification result\n");
        result.append("   */\n");
        result.append("  public double classifyInstance(Instance i) throws Exception {\n");
        result.append("    Object[] s = new Object[i.numAttributes()];\n");
        result.append("    \n");
        result.append("    for (int j = 0; j < s.length; j++) {\n");
        result.append("      if (!i.isMissing(j)) {\n");
        result.append("        if (i.attribute(j).isNominal())\n");
        result.append("          s[j] = new String(i.stringValue(j));\n");
        result.append("        else if (i.attribute(j).isNumeric())\n");
        result.append("          s[j] = new Double(i.value(j));\n");
        result.append("      }\n");
        result.append("    }\n");
        result.append("    \n");
        result.append("    // set class value to missing\n");
        result.append("    s[i.classIndex()] = null;\n");
        result.append("    \n");
        result.append("    return " + className + ".classify(s);\n");
        result.append("  }\n");

        // getRevision
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Returns the revision string.\n");
        result.append("   * \n");
        result.append("   * @return        the revision\n");
        result.append("   */\n");
        result.append("  public String getRevision() {\n");
        result.append("    return RevisionUtils.extract(\"1.0\");\n");
        result.append("  }\n");

        // toString
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Returns only the classnames and what classifier it is based on.\n");
        result.append("   *\n");
        result.append("   * @return a short description\n");
        result.append("   */\n");
        result.append("  public String toString() {\n");
        result.append("    return \"Auto-generated classifier wrapper, based on " + classifier.getClass().getName()
                + " (generated with Weka " + Version.VERSION + ").\\n" + "\" + this.getClass().getName() + \"/"
                + className + "\";\n");
        result.append("  }\n");

        // main
        result.append("\n");
        result.append("  /**\n");
        result.append("   * Runs the classfier from commandline.\n");
        result.append("   *\n");
        result.append("   * @param args the commandline arguments\n");
        result.append("   */\n");
        result.append("  public static void main(String args[]) {\n");
        result.append("    runClassifier(new WekaWrapper(), args);\n");
        result.append("  }\n");
        result.append("}\n");

        // actual classifier code
        result.append("\n");
        result.append(staticClassifier);

        return result.toString();
    }

    /**
     * Gets the number of test instances that had a known class value (actually
     * the sum of the weights of test instances with known class value).
     * 
     * @return the number of test instances with known class
     */
    public final double numInstances() {

        return m_WithClass;
    }

    /**
     * Gets the number of instances incorrectly classified (that is, for which an
     * incorrect prediction was made). (Actually the sum of the weights of these
     * instances)
     * 
     * @return the number of incorrectly classified instances
     */
    public final double incorrect() {

        return m_Incorrect;
    }

    /**
     * Gets the percentage of instances incorrectly classified (that is, for which
     * an incorrect prediction was made).
     * 
     * @return the percent of incorrectly classified instances (between 0 and 100)
     */
    public final double pctIncorrect() {

        return 100 * m_Incorrect / m_WithClass;
    }

    /**
     * Gets the total cost, that is, the cost of each prediction times the weight
     * of the instance, summed over all instances.
     * 
     * @return the total cost
     */
    public final double totalCost() {

        return m_TotalCost;
    }

    /**
     * Gets the average cost, that is, total cost of misclassifications (incorrect
     * plus unclassified) over the total number of instances.
     * 
     * @return the average cost.
     */
    public final double avgCost() {

        return m_TotalCost / m_WithClass;
    }

    /**
     * Gets the number of instances correctly classified (that is, for which a
     * correct prediction was made). (Actually the sum of the weights of these
     * instances)
     * 
     * @return the number of correctly classified instances
     */
    public final double correct() {

        return m_Correct;
    }

    /**
     * Gets the percentage of instances correctly classified (that is, for which a
     * correct prediction was made).
     * 
     * @return the percent of correctly classified instances (between 0 and 100)
     */
    public final double pctCorrect() {

        return 100 * m_Correct / m_WithClass;
    }

    /**
     * Gets the number of instances not classified (that is, for which no
     * prediction was made by the classifier). (Actually the sum of the weights of
     * these instances)
     * 
     * @return the number of unclassified instances
     */
    public final double unclassified() {

        return m_Unclassified;
    }

    /**
     * Gets the percentage of instances not classified (that is, for which no
     * prediction was made by the classifier).
     * 
     * @return the percent of unclassified instances (between 0 and 100)
     */
    public final double pctUnclassified() {

        return 100 * m_Unclassified / m_WithClass;
    }

    /**
     * Returns the estimated error rate or the root mean squared error (if the
     * class is numeric). If a cost matrix was given this error rate gives the
     * average cost.
     * 
     * @return the estimated error rate (between 0 and 1, or between 0 and maximum
     *         cost)
     */
    public final double errorRate() {

        if (!m_ClassIsNominal) {
            return Math.sqrt(m_SumSqrErr / (m_WithClass - m_Unclassified));
        }
        if (m_CostMatrix == null) {
            return m_Incorrect / m_WithClass;
        } else {
            return avgCost();
        }
    }

    /**
     * Returns value of kappa statistic if class is nominal.
     * 
     * @return the value of the kappa statistic
     */
    public final double kappa() {

        double[] sumRows = new double[m_ConfusionMatrix.length];
        double[] sumColumns = new double[m_ConfusionMatrix.length];
        double sumOfWeights = 0;
        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            for (int j = 0; j < m_ConfusionMatrix.length; j++) {
                sumRows[i] += m_ConfusionMatrix[i][j];
                sumColumns[j] += m_ConfusionMatrix[i][j];
                sumOfWeights += m_ConfusionMatrix[i][j];
            }
        }
        double correct = 0, chanceAgreement = 0;
        for (int i = 0; i < m_ConfusionMatrix.length; i++) {
            chanceAgreement += (sumRows[i] * sumColumns[i]);
            correct += m_ConfusionMatrix[i][i];
        }
        chanceAgreement /= (sumOfWeights * sumOfWeights);
        correct /= sumOfWeights;

        if (chanceAgreement < 1) {
            return (correct - chanceAgreement) / (1 - chanceAgreement);
        } else {
            return 1;
        }
    }

    /**
     * Returns the correlation coefficient if the class is numeric.
     * 
     * @return the correlation coefficient
     * @throws Exception if class is not numeric
     */
    public final double correlationCoefficient() throws Exception {

        if (m_ClassIsNominal) {
            throw new Exception("Can't compute correlation coefficient: " + "class is nominal!");
        }

        double correlation = 0;
        double varActual = m_SumSqrClass - m_SumClass * m_SumClass / (m_WithClass - m_Unclassified);
        double varPredicted = m_SumSqrPredicted - m_SumPredicted * m_SumPredicted / (m_WithClass - m_Unclassified);
        double varProd = m_SumClassPredicted - m_SumClass * m_SumPredicted / (m_WithClass - m_Unclassified);

        if (varActual * varPredicted <= 0) {
            correlation = 0.0;
        } else {
            correlation = varProd / Math.sqrt(varActual * varPredicted);
        }

        return correlation;
    }

    /**
     * Returns the mean absolute error. Refers to the error of the predicted
     * values for numeric classes, and the error of the predicted probability
     * distribution for nominal classes.
     * 
     * @return the mean absolute error
     */
    public final double meanAbsoluteError() {

        return m_SumAbsErr / (m_WithClass - m_Unclassified);
    }

    /**
     * Returns the mean absolute error of the prior.
     * 
     * @return the mean absolute error
     */
    public final double meanPriorAbsoluteError() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumPriorAbsErr / m_WithClass;
    }

    /**
     * Returns the relative absolute error.
     * 
     * @return the relative absolute error
     * @throws Exception if it can't be computed
     */
    public final double relativeAbsoluteError() throws Exception {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return 100 * meanAbsoluteError() / meanPriorAbsoluteError();
    }

    /**
     * Returns the root mean squared error.
     * 
     * @return the root mean squared error
     */
    public final double rootMeanSquaredError() {

        return Math.sqrt(m_SumSqrErr / (m_WithClass - m_Unclassified));
    }

    /**
     * Returns the root mean prior squared error.
     * 
     * @return the root mean prior squared error
     */
    public final double rootMeanPriorSquaredError() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return Math.sqrt(m_SumPriorSqrErr / m_WithClass);
    }

    /**
     * Returns the root relative squared error if the class is numeric.
     * 
     * @return the root relative squared error
     */
    public final double rootRelativeSquaredError() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return 100.0 * rootMeanSquaredError() / rootMeanPriorSquaredError();
    }

    /**
     * Calculate the entropy of the prior distribution
     * 
     * @return the entropy of the prior distribution
     * @throws Exception if the class is not nominal
     */
    public final double priorEntropy() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute entropy of class prior: " + "class numeric!");
        }

        if (m_NoPriors) {
            return Double.NaN;
        }

        double entropy = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            entropy -= m_ClassPriors[i] / m_ClassPriorsSum * Utils.log2(m_ClassPriors[i] / m_ClassPriorsSum);
        }
        return entropy;
    }

    /**
     * Return the total Kononenko & Bratko Information score in bits
     * 
     * @return the K&B information score
     * @throws Exception if the class is not nominal
     */
    public final double KBInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumKBInfo;
    }

    /**
     * Return the Kononenko & Bratko Information score in bits per instance.
     * 
     * @return the K&B information score
     * @throws Exception if the class is not nominal
     */
    public final double KBMeanInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumKBInfo / (m_WithClass - m_Unclassified);
    }

    /**
     * Return the Kononenko & Bratko Relative Information score
     * 
     * @return the K&B relative information score
     * @throws Exception if the class is not nominal
     */
    public final double KBRelativeInformation() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Can't compute K&B Info score: " + "class numeric!");
        }

        if (m_NoPriors) {
            return Double.NaN;
        }

        return 100.0 * KBInformation() / priorEntropy();
    }

    /**
     * Returns the total entropy for the null model
     * 
     * @return the total null model entropy
     */
    public final double SFPriorEntropy() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumPriorEntropy;
    }

    /**
     * Returns the entropy per instance for the null model
     * 
     * @return the null model entropy per instance
     */
    public final double SFMeanPriorEntropy() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumPriorEntropy / m_WithClass;
    }

    /**
     * Returns the total entropy for the scheme
     * 
     * @return the total scheme entropy
     */
    public final double SFSchemeEntropy() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumSchemeEntropy;
    }

    /**
     * Returns the entropy per instance for the scheme
     * 
     * @return the scheme entropy per instance
     */
    public final double SFMeanSchemeEntropy() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumSchemeEntropy / (m_WithClass - m_Unclassified);
    }

    /**
     * Returns the total SF, which is the null model entropy minus the scheme
     * entropy.
     * 
     * @return the total SF
     */
    public final double SFEntropyGain() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return m_SumPriorEntropy - m_SumSchemeEntropy;
    }

    /**
     * Returns the SF per instance, which is the null model entropy minus the
     * scheme entropy, per instance.
     * 
     * @return the SF per instance
     */
    public final double SFMeanEntropyGain() {

        if (m_NoPriors) {
            return Double.NaN;
        }

        return (m_SumPriorEntropy - m_SumSchemeEntropy) / (m_WithClass - m_Unclassified);
    }

    /**
     * Output the cumulative margin distribution as a string suitable for input
     * for gnuplot or similar package.
     * 
     * @return the cumulative margin distribution
     * @throws Exception if the class attribute is nominal
     */
    public String toCumulativeMarginDistributionString() throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Class must be nominal for margin distributions");
        }
        String result = "";
        double cumulativeCount = 0;
        double margin;
        for (int i = 0; i <= k_MarginResolution; i++) {
            if (m_MarginCounts[i] != 0) {
                cumulativeCount += m_MarginCounts[i];
                margin = i * 2.0 / k_MarginResolution - 1.0;
                result = result + Utils.doubleToString(margin, 7, 3) + ' '
                        + Utils.doubleToString(cumulativeCount * 100 / m_WithClass, 7, 3) + '\n';
            } else if (i == 0) {
                result = Utils.doubleToString(-1.0, 7, 3) + ' ' + Utils.doubleToString(0, 7, 3) + '\n';
            }
        }
        return result;
    }

    /**
     * Calls toSummaryString() with no title and no complexity stats
     * 
     * @return a summary description of the classifier evaluation
     */
    @Override
    public String toSummaryString() {

        return toSummaryString("", false);
    }

    /**
     * Calls toSummaryString() with a default title.
     * 
     * @param printComplexityStatistics if true, complexity statistics are
     *          returned as well
     * @return the summary string
     */
    public String toSummaryString(boolean printComplexityStatistics) {

        return toSummaryString("=== Summary ===\n", printComplexityStatistics);
    }

    /**
     * Outputs the performance statistics in summary form. Lists number (and
     * percentage) of instances classified correctly, incorrectly and
     * unclassified. Outputs the total number of instances classified, and the
     * number of instances (if any) that had no class value provided.
     * 
     * @param title the title for the statistics
     * @param printComplexityStatistics if true, complexity statistics are
     *          returned as well
     * @return the summary as a String
     */
    public String toSummaryString(String title, boolean printComplexityStatistics) {

        StringBuffer text = new StringBuffer();

        if (printComplexityStatistics && m_NoPriors) {
            printComplexityStatistics = false;
            System.err.println("Priors disabled, cannot print complexity statistics!");
        }

        text.append(title + "\n");
        try {
            if (m_WithClass > 0) {
                if (m_ClassIsNominal) {

                    text.append("Correctly Classified Instances     ");
                    text.append(Utils.doubleToString(correct(), 12, 4) + "     "
                            + Utils.doubleToString(pctCorrect(), 12, 4) + " %\n");
                    text.append("Incorrectly Classified Instances   ");
                    text.append(Utils.doubleToString(incorrect(), 12, 4) + "     "
                            + Utils.doubleToString(pctIncorrect(), 12, 4) + " %\n");
                    text.append("Kappa statistic                    ");
                    text.append(Utils.doubleToString(kappa(), 12, 4) + "\n");

                    if (m_CostMatrix != null) {
                        text.append("Total Cost                         ");
                        text.append(Utils.doubleToString(totalCost(), 12, 4) + "\n");
                        text.append("Average Cost                       ");
                        text.append(Utils.doubleToString(avgCost(), 12, 4) + "\n");
                    }
                    if (printComplexityStatistics) {
                        text.append("K&B Relative Info Score            ");
                        text.append(Utils.doubleToString(KBRelativeInformation(), 12, 4) + " %\n");
                        text.append("K&B Information Score              ");
                        text.append(Utils.doubleToString(KBInformation(), 12, 4) + " bits");
                        text.append(Utils.doubleToString(KBMeanInformation(), 12, 4) + " bits/instance\n");
                    }
                } else {
                    text.append("Correlation coefficient            ");
                    text.append(Utils.doubleToString(correlationCoefficient(), 12, 4) + "\n");
                }
                if (printComplexityStatistics) {
                    text.append("Class complexity | order 0         ");
                    text.append(Utils.doubleToString(SFPriorEntropy(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanPriorEntropy(), 12, 4) + " bits/instance\n");
                    text.append("Class complexity | scheme          ");
                    text.append(Utils.doubleToString(SFSchemeEntropy(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanSchemeEntropy(), 12, 4) + " bits/instance\n");
                    text.append("Complexity improvement     (Sf)    ");
                    text.append(Utils.doubleToString(SFEntropyGain(), 12, 4) + " bits");
                    text.append(Utils.doubleToString(SFMeanEntropyGain(), 12, 4) + " bits/instance\n");
                }

                text.append("Mean absolute error                ");
                text.append(Utils.doubleToString(meanAbsoluteError(), 12, 4) + "\n");
                text.append("Root mean squared error            ");
                text.append(Utils.doubleToString(rootMeanSquaredError(), 12, 4) + "\n");
                if (!m_NoPriors) {
                    text.append("Relative absolute error            ");
                    text.append(Utils.doubleToString(relativeAbsoluteError(), 12, 4) + " %\n");
                    text.append("Root relative squared error        ");
                    text.append(Utils.doubleToString(rootRelativeSquaredError(), 12, 4) + " %\n");
                }
            }
            if (Utils.gr(unclassified(), 0)) {
                text.append("UnClassified Instances             ");
                text.append(Utils.doubleToString(unclassified(), 12, 4) + "     "
                        + Utils.doubleToString(pctUnclassified(), 12, 4) + " %\n");
            }
            text.append("Total Number of Instances          ");
            text.append(Utils.doubleToString(m_WithClass, 12, 4) + "\n");
            if (m_MissingClass > 0) {
                text.append("Ignored Class Unknown Instances            ");
                text.append(Utils.doubleToString(m_MissingClass, 12, 4) + "\n");
            }
        } catch (Exception ex) {
            // Should never occur since the class is known to be nominal
            // here
            System.err.println("Arggh - Must be a bug in Evaluation class");
        }

        return text.toString();
    }

    /**
     * Calls toMatrixString() with a default title.
     * 
     * @return the confusion matrix as a string
     * @throws Exception if the class is numeric
     */
    public String toMatrixString() throws Exception {

        return toMatrixString("=== Confusion Matrix ===\n");
    }

    /**
     * Outputs the performance statistics as a classification confusion matrix.
     * For each class value, shows the distribution of predicted class values.
     * 
     * @param title the title for the confusion matrix
     * @return the confusion matrix as a String
     * @throws Exception if the class is numeric
     */
    public String toMatrixString(String title) throws Exception {

        StringBuffer text = new StringBuffer();
        char[] IDChars = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
                's', 't', 'u', 'v', 'w', 'x', 'y', 'z' };
        int IDWidth;
        boolean fractional = false;

        if (!m_ClassIsNominal) {
            throw new Exception("Evaluation: No confusion matrix possible!");
        }

        // Find the maximum value in the matrix
        // and check for fractional display requirement
        double maxval = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                double current = m_ConfusionMatrix[i][j];
                if (current < 0) {
                    current *= -10;
                }
                if (current > maxval) {
                    maxval = current;
                }
                double fract = current - Math.rint(current);
                if (!fractional && ((Math.log(fract) / Math.log(10)) >= -2)) {
                    fractional = true;
                }
            }
        }

        IDWidth = 1 + Math.max((int) (Math.log(maxval) / Math.log(10) + (fractional ? 3 : 0)),
                (int) (Math.log(m_NumClasses) / Math.log(IDChars.length)));
        text.append(title).append("\n");
        for (int i = 0; i < m_NumClasses; i++) {
            if (fractional) {
                text.append(" ").append(num2ShortID(i, IDChars, IDWidth - 3)).append("   ");
            } else {
                text.append(" ").append(num2ShortID(i, IDChars, IDWidth));
            }
        }
        text.append("   <-- classified as\n");
        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                text.append(" ")
                        .append(Utils.doubleToString(m_ConfusionMatrix[i][j], IDWidth, (fractional ? 2 : 0)));
            }
            text.append(" | ").append(num2ShortID(i, IDChars, IDWidth)).append(" = ").append(m_ClassNames[i])
                    .append("\n");
        }
        return text.toString();
    }

    /**
     * Generates a breakdown of the accuracy for each class (with default title),
     * incorporating various information-retrieval statistics, such as true/false
     * positive rate, precision/recall/F-Measure. Should be useful for ROC curves,
     * recall/precision curves.
     * 
     * @return the statistics presented as a string
     * @throws Exception if class is not nominal
     */
    public String toClassDetailsString() throws Exception {

        return toClassDetailsString("=== Detailed Accuracy By Class ===\n");
    }

    /**
     * Generates a breakdown of the accuracy for each class, incorporating various
     * information-retrieval statistics, such as true/false positive rate,
     * precision/recall/F-Measure. Should be useful for ROC curves,
     * recall/precision curves.
     * 
     * @param title the title to prepend the stats string with
     * @return the statistics presented as a string
     * @throws Exception if class is not nominal
     */
    public String toClassDetailsString(String title) throws Exception {

        if (!m_ClassIsNominal) {
            throw new Exception("Evaluation: No confusion matrix possible!");
        }

        StringBuffer text = new StringBuffer(title + "\n               TP Rate   FP Rate" + "   Precision   Recall"
                + "  F-Measure   ROC Area  Class\n");
        for (int i = 0; i < m_NumClasses; i++) {
            text.append("               " + Utils.doubleToString(truePositiveRate(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(falsePositiveRate(i), 7, 3)).append("    ");
            text.append(Utils.doubleToString(precision(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(recall(i), 7, 3)).append("   ");
            text.append(Utils.doubleToString(fMeasure(i), 7, 3)).append("    ");

            double rocVal = areaUnderROC(i);
            if (Instance.isMissingValue(rocVal)) {
                text.append("  ?    ").append("    ");
            } else {
                text.append(Utils.doubleToString(rocVal, 7, 3)).append("    ");
            }
            text.append(m_ClassNames[i]).append('\n');
        }

        text.append("Weighted Avg.  " + Utils.doubleToString(weightedTruePositiveRate(), 7, 3));
        text.append("   " + Utils.doubleToString(weightedFalsePositiveRate(), 7, 3));
        text.append("    " + Utils.doubleToString(weightedPrecision(), 7, 3));
        text.append("   " + Utils.doubleToString(weightedRecall(), 7, 3));
        text.append("   " + Utils.doubleToString(weightedFMeasure(), 7, 3));
        text.append("    " + Utils.doubleToString(weightedAreaUnderROC(), 7, 3));
        text.append("\n");

        return text.toString();
    }

    /**
     * Calculate the number of true positives with respect to a particular class.
     * This is defined as
     * <p/>
     * 
     * <pre>
     * correctly classified positives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double numTruePositives(int classIndex) {

        double correct = 0;
        for (int j = 0; j < m_NumClasses; j++) {
            if (j == classIndex) {
                correct += m_ConfusionMatrix[classIndex][j];
            }
        }
        return correct;
    }

    /**
     * Calculate the true positive rate with respect to a particular class. This
     * is defined as
     * <p/>
     * 
     * <pre>
     * correctly classified positives
     * ------------------------------
     *       total positives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double truePositiveRate(int classIndex) {

        double correct = 0, total = 0;
        for (int j = 0; j < m_NumClasses; j++) {
            if (j == classIndex) {
                correct += m_ConfusionMatrix[classIndex][j];
            }
            total += m_ConfusionMatrix[classIndex][j];
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculates the weighted (by class size) true positive rate.
     * 
     * @return the weighted true positive rate.
     */
    public double weightedTruePositiveRate() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double truePosTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = truePositiveRate(i);
            truePosTotal += (temp * classCounts[i]);
        }

        return truePosTotal / classCountSum;
    }

    /**
     * Calculate the number of true negatives with respect to a particular class.
     * This is defined as
     * <p/>
     * 
     * <pre>
     * correctly classified negatives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double numTrueNegatives(int classIndex) {

        double correct = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        correct += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return correct;
    }

    /**
     * Calculate the true negative rate with respect to a particular class. This
     * is defined as
     * <p/>
     * 
     * <pre>
     * correctly classified negatives
     * ------------------------------
     *       total negatives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the true positive rate
     */
    public double trueNegativeRate(int classIndex) {

        double correct = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        correct += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculates the weighted (by class size) true negative rate.
     * 
     * @return the weighted true negative rate.
     */
    public double weightedTrueNegativeRate() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double trueNegTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = trueNegativeRate(i);
            trueNegTotal += (temp * classCounts[i]);
        }

        return trueNegTotal / classCountSum;
    }

    /**
     * Calculate number of false positives with respect to a particular class.
     * This is defined as
     * <p/>
     * 
     * <pre>
     * incorrectly classified negatives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double numFalsePositives(int classIndex) {

        double incorrect = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j == classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return incorrect;
    }

    /**
     * Calculate the false positive rate with respect to a particular class. This
     * is defined as
     * <p/>
     * 
     * <pre>
     * incorrectly classified negatives
     * --------------------------------
     *        total negatives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double falsePositiveRate(int classIndex) {

        double incorrect = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i != classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j == classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return incorrect / total;
    }

    /**
     * Calculates the weighted (by class size) false positive rate.
     * 
     * @return the weighted false positive rate.
     */
    public double weightedFalsePositiveRate() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double falsePosTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = falsePositiveRate(i);
            falsePosTotal += (temp * classCounts[i]);
        }

        return falsePosTotal / classCountSum;
    }

    /**
     * Calculate number of false negatives with respect to a particular class.
     * This is defined as
     * <p/>
     * 
     * <pre>
     * incorrectly classified positives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double numFalseNegatives(int classIndex) {

        double incorrect = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                }
            }
        }
        return incorrect;
    }

    /**
     * Calculate the false negative rate with respect to a particular class. This
     * is defined as
     * <p/>
     * 
     * <pre>
     * incorrectly classified positives
     * --------------------------------
     *        total positives
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the false positive rate
     */
    public double falseNegativeRate(int classIndex) {

        double incorrect = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (j != classIndex) {
                        incorrect += m_ConfusionMatrix[i][j];
                    }
                    total += m_ConfusionMatrix[i][j];
                }
            }
        }
        if (total == 0) {
            return 0;
        }
        return incorrect / total;
    }

    /**
     * Calculates the weighted (by class size) false negative rate.
     * 
     * @return the weighted false negative rate.
     */
    public double weightedFalseNegativeRate() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double falseNegTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = falseNegativeRate(i);
            falseNegTotal += (temp * classCounts[i]);
        }

        return falseNegTotal / classCountSum;
    }

    /**
     * Calculate the recall with respect to a particular class. This is defined as
     * <p/>
     * 
     * <pre>
     * correctly classified positives
     * ------------------------------
     *       total positives
     * </pre>
     * <p/>
     * (Which is also the same as the truePositiveRate.)
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the recall
     */
    public double recall(int classIndex) {

        return truePositiveRate(classIndex);
    }

    /**
     * Calculates the weighted (by class size) recall.
     * 
     * @return the weighted recall.
     */
    public double weightedRecall() {
        return weightedTruePositiveRate();
    }

    /**
     * Calculate the precision with respect to a particular class. This is defined
     * as
     * <p/>
     * 
     * <pre>
     * correctly classified positives
     * ------------------------------
     *  total predicted as positive
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the precision
     */
    public double precision(int classIndex) {

        double correct = 0, total = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            if (i == classIndex) {
                correct += m_ConfusionMatrix[i][classIndex];
            }
            total += m_ConfusionMatrix[i][classIndex];
        }
        if (total == 0) {
            return 0;
        }
        return correct / total;
    }

    /**
     * Calculates the weighted (by class size) false precision.
     * 
     * @return the weighted precision.
     */
    public double weightedPrecision() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double precisionTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = precision(i);
            precisionTotal += (temp * classCounts[i]);
        }

        return precisionTotal / classCountSum;
    }

    /**
     * Calculate the F-Measure with respect to a particular class. This is defined
     * as
     * <p/>
     * 
     * <pre>
     * 2 * recall * precision
     * ----------------------
     *   recall + precision
     * </pre>
     * 
     * @param classIndex the index of the class to consider as "positive"
     * @return the F-Measure
     */
    public double fMeasure(int classIndex) {

        double precision = precision(classIndex);
        double recall = recall(classIndex);
        if ((precision + recall) == 0) {
            return 0;
        }
        return 2 * precision * recall / (precision + recall);
    }

    /**
     * Calculates the weighted (by class size) F-Measure.
     * 
     * @return the weighted F-Measure.
     */
    public double weightedFMeasure() {
        double[] classCounts = new double[m_NumClasses];
        double classCountSum = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            for (int j = 0; j < m_NumClasses; j++) {
                classCounts[i] += m_ConfusionMatrix[i][j];
            }
            classCountSum += classCounts[i];
        }

        double fMeasureTotal = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            double temp = fMeasure(i);
            fMeasureTotal += (temp * classCounts[i]);
        }

        return fMeasureTotal / classCountSum;
    }

    /**
     * Sets the class prior probabilities
     * 
     * @param train the training instances used to determine the prior
     *          probabilities
     * @throws Exception if the class attribute of the instances is not set
     */
    public void setPriors(Instances train) throws Exception {
        m_NoPriors = false;

        if (!m_ClassIsNominal) {

            m_NumTrainClassVals = 0;
            m_TrainClassVals = null;
            m_TrainClassWeights = null;
            m_PriorErrorEstimator = null;
            m_ErrorEstimator = null;

            for (int i = 0; i < train.numInstances(); i++) {
                Instance currentInst = train.instance(i);
                if (!currentInst.classIsMissing()) {
                    addNumericTrainClass(currentInst.classValue(), currentInst.weight());
                }
            }

        } else {
            for (int i = 0; i < m_NumClasses; i++) {
                m_ClassPriors[i] = 1;
            }
            m_ClassPriorsSum = m_NumClasses;
            for (int i = 0; i < train.numInstances(); i++) {
                if (!train.instance(i).classIsMissing()) {
                    m_ClassPriors[(int) train.instance(i).classValue()] += train.instance(i).weight();
                    m_ClassPriorsSum += train.instance(i).weight();
                }
            }
        }
    }

    /**
     * Get the current weighted class counts
     * 
     * @return the weighted class counts
     */
    public double[] getClassPriors() {
        return m_ClassPriors;
    }

    /**
     * Updates the class prior probabilities (when incrementally training)
     * 
     * @param instance the new training instance seen
     * @throws Exception if the class of the instance is not set
     */
    public void updatePriors(Instance instance) throws Exception {
        if (!instance.classIsMissing()) {
            if (!m_ClassIsNominal) {
                if (!instance.classIsMissing()) {
                    addNumericTrainClass(instance.classValue(), instance.weight());
                }
            } else {
                m_ClassPriors[(int) instance.classValue()] += instance.weight();
                m_ClassPriorsSum += instance.weight();
            }
        }
    }

    /**
     * disables the use of priors, e.g., in case of de-serialized schemes that
     * have no access to the original training set, but are evaluated on a set
     * set.
     */
    public void useNoPriors() {
        m_NoPriors = true;
    }

    /**
     * Tests whether the current evaluation object is equal to another evaluation
     * object
     * 
     * @param obj the object to compare against
     * @return true if the two objects are equal
     */
    @Override
    public boolean equals(Object obj) {

        if ((obj == null) || !(obj.getClass().equals(this.getClass()))) {
            return false;
        }
        Evaluation cmp = (Evaluation) obj;
        if (m_ClassIsNominal != cmp.m_ClassIsNominal) {
            return false;
        }
        if (m_NumClasses != cmp.m_NumClasses) {
            return false;
        }

        if (m_Incorrect != cmp.m_Incorrect) {
            return false;
        }
        if (m_Correct != cmp.m_Correct) {
            return false;
        }
        if (m_Unclassified != cmp.m_Unclassified) {
            return false;
        }
        if (m_MissingClass != cmp.m_MissingClass) {
            return false;
        }
        if (m_WithClass != cmp.m_WithClass) {
            return false;
        }

        if (m_SumErr != cmp.m_SumErr) {
            return false;
        }
        if (m_SumAbsErr != cmp.m_SumAbsErr) {
            return false;
        }
        if (m_SumSqrErr != cmp.m_SumSqrErr) {
            return false;
        }
        if (m_SumClass != cmp.m_SumClass) {
            return false;
        }
        if (m_SumSqrClass != cmp.m_SumSqrClass) {
            return false;
        }
        if (m_SumPredicted != cmp.m_SumPredicted) {
            return false;
        }
        if (m_SumSqrPredicted != cmp.m_SumSqrPredicted) {
            return false;
        }
        if (m_SumClassPredicted != cmp.m_SumClassPredicted) {
            return false;
        }

        if (m_ClassIsNominal) {
            for (int i = 0; i < m_NumClasses; i++) {
                for (int j = 0; j < m_NumClasses; j++) {
                    if (m_ConfusionMatrix[i][j] != cmp.m_ConfusionMatrix[i][j]) {
                        return false;
                    }
                }
            }
        }

        return true;
    }

    /**
     * Prints the predictions for the given dataset into a String variable.
     * 
     * @param classifier the classifier to use
     * @param train the training data
     * @param testSource the test set
     * @param classIndex the class index (1-based), if -1 ot does not override the
     *          class index is stored in the data file (by using the last
     *          attribute)
     * @param attributesToOutput the indices of the attributes to output
     * @return the generated predictions for the attribute range
     * @throws Exception if test file cannot be opened
     */
    public static void printClassifications(Classifier classifier, Instances train, DataSource testSource,
            int classIndex, Range attributesToOutput, StringBuffer predsText) throws Exception {

        printClassifications(classifier, train, testSource, classIndex, attributesToOutput, false, predsText);
    }

    /**
     * Prints the header for the predictions output into a supplied StringBuffer
     * 
     * @param test structure of the test set to print predictions for
     * @param attributesToOutput indices of the attributes to output
     * @param printDistribution prints the complete distribution for nominal
     *          attributes, not just the predicted value
     * @param text the StringBuffer to print to
     */
    protected static void printClassificationsHeader(Instances test, Range attributesToOutput,
            boolean printDistribution, StringBuffer text) {
        // print header
        if (test.classAttribute().isNominal()) {
            if (printDistribution) {
                text.append(" inst#     actual  predicted error distribution");
            } else {
                text.append(" inst#     actual  predicted error prediction");
            }
        } else {
            text.append(" inst#     actual  predicted      error");
        }
        if (attributesToOutput != null) {
            attributesToOutput.setUpper(test.numAttributes() - 1);
            text.append(" (");
            boolean first = true;
            for (int i = 0; i < test.numAttributes(); i++) {
                if (i == test.classIndex()) {
                    continue;
                }

                if (attributesToOutput.isInRange(i)) {
                    if (!first) {
                        text.append(",");
                    }
                    text.append(test.attribute(i).name());
                    first = false;
                }
            }
            text.append(")");
        }
        text.append("\n");
    }

    /**
     * Prints the predictions for the given dataset into a supplied StringBuffer
     * 
     * @param classifier the classifier to use
     * @param train the training data
     * @param testSource the test set
     * @param classIndex the class index (1-based), if -1 ot does not override the
     *          class index is stored in the data file (by using the last
     *          attribute)
     * @param attributesToOutput the indices of the attributes to output
     * @param printDistribution prints the complete distribution for nominal
     *          classes, not just the predicted value
     * @param text StringBuffer to hold the printed predictions
     * @throws Exception if test file cannot be opened
     */
    public static void printClassifications(Classifier classifier, Instances train, DataSource testSource,
            int classIndex, Range attributesToOutput, boolean printDistribution, StringBuffer text)
            throws Exception {

        if (testSource != null) {
            Instances test = testSource.getStructure();
            if (classIndex != -1) {
                test.setClassIndex(classIndex - 1);
            } else {
                if (test.classIndex() == -1) {
                    test.setClassIndex(test.numAttributes() - 1);
                }
            }

            // print the header
            printClassificationsHeader(test, attributesToOutput, printDistribution, text);

            // print predictions
            int i = 0;
            testSource.reset();
            test = testSource.getStructure(test.classIndex());
            while (testSource.hasMoreElements(test)) {
                Instance inst = testSource.nextElement(test);
                text.append(predictionText(classifier, inst, i, attributesToOutput, printDistribution));
                i++;
            }
        }
        // return text.toString();
    }

    /**
     * store the prediction made by the classifier as a string
     * 
     * @param classifier the classifier to use
     * @param inst the instance to generate text from
     * @param instNum the index in the dataset
     * @param attributesToOutput the indices of the attributes to output
     * @param printDistribution prints the complete distribution for nominal
     *          classes, not just the predicted value
     * @return the prediction as a String
     * @throws Exception if something goes wrong
     * @see #printClassifications(Classifier, Instances, String, int, Range,
     *      boolean)
     */
    protected static String predictionText(Classifier classifier, Instance inst, int instNum,
            Range attributesToOutput, boolean printDistribution)

            throws Exception {

        StringBuffer result = new StringBuffer();
        int width = 10;
        int prec = 3;

        Instance withMissing = (Instance) inst.copy();
        withMissing.setDataset(inst.dataset());
        withMissing.setMissing(withMissing.classIndex());
        double predValue = classifier.classifyInstance(withMissing);

        // index
        result.append(Utils.padLeft("" + (instNum + 1), 6));

        if (inst.dataset().classAttribute().isNumeric()) {
            // actual
            if (inst.classIsMissing()) {
                result.append(" " + Utils.padLeft("?", width));
            } else {
                result.append(" " + Utils.doubleToString(inst.classValue(), width, prec));
            }
            // predicted
            if (Instance.isMissingValue(predValue)) {
                result.append(" " + Utils.padLeft("?", width));
            } else {
                result.append(" " + Utils.doubleToString(predValue, width, prec));
            }
            // error
            if (Instance.isMissingValue(predValue) || inst.classIsMissing()) {
                result.append(" " + Utils.padLeft("?", width));
            } else {
                result.append(" " + Utils.doubleToString(predValue - inst.classValue(), width, prec));
            }
        } else {
            // actual
            result.append(" "
                    + Utils.padLeft(((int) inst.classValue() + 1) + ":" + inst.toString(inst.classIndex()), width));
            // predicted
            if (Instance.isMissingValue(predValue)) {
                result.append(" " + Utils.padLeft("?", width));
            } else {
                result.append(" " + Utils.padLeft(
                        ((int) predValue + 1) + ":" + inst.dataset().classAttribute().value((int) predValue),
                        width));
            }
            // error?
            if (!Instance.isMissingValue(predValue) && !inst.classIsMissing()
                    && ((int) predValue + 1 != (int) inst.classValue() + 1)) {
                result.append(" " + "  +  ");
            } else {
                result.append(" " + "     ");
            }
            // prediction/distribution
            if (printDistribution) {
                if (Instance.isMissingValue(predValue)) {
                    result.append(" " + "?");
                } else {
                    result.append(" ");
                    double[] dist = classifier.distributionForInstance(withMissing);
                    for (int n = 0; n < dist.length; n++) {
                        if (n > 0) {
                            result.append(",");
                        }
                        if (n == (int) predValue) {
                            result.append("*");
                        }
                        result.append(Utils.doubleToString(dist[n], prec));
                    }
                }
            } else {
                if (Instance.isMissingValue(predValue)) {
                    result.append(" " + "?");
                } else {
                    result.append(" " + Utils.doubleToString(
                            classifier.distributionForInstance(withMissing)[(int) predValue], prec));
                }
            }
        }

        // attributes
        result.append(" " + attributeValuesString(withMissing, attributesToOutput) + "\n");

        return result.toString();
    }

    /**
     * Builds a string listing the attribute values in a specified range of
     * indices, separated by commas and enclosed in brackets.
     * 
     * @param instance the instance to print the values from
     * @param attRange the range of the attributes to list
     * @return a string listing values of the attributes in the range
     */
    protected static String attributeValuesString(Instance instance, Range attRange) {
        StringBuffer text = new StringBuffer();
        if (attRange != null) {
            boolean firstOutput = true;
            attRange.setUpper(instance.numAttributes() - 1);
            for (int i = 0; i < instance.numAttributes(); i++) {
                if (attRange.isInRange(i) && i != instance.classIndex()) {
                    if (firstOutput) {
                        text.append("(");
                    } else {
                        text.append(",");
                    }
                    text.append(instance.toString(i));
                    firstOutput = false;
                }
            }
            if (!firstOutput) {
                text.append(")");
            }
        }
        return text.toString();
    }

    /**
     * Make up the help string giving all the command line options
     * 
     * @param classifier the classifier to include options for
     * @param globalInfo include the global information string for the classifier
     *          (if available).
     * @return a string detailing the valid command line options
     */
    protected static String makeOptionString(Classifier classifier, boolean globalInfo) {

        StringBuffer optionsText = new StringBuffer("");

        // General options
        optionsText.append("\n\nGeneral options:\n\n");
        optionsText.append("-h or -help\n");
        optionsText.append("\tOutput help information.\n");
        optionsText.append("-synopsis or -info\n");
        optionsText.append("\tOutput synopsis for classifier (use in conjunction " + " with -h)\n");
        optionsText.append("-t <name of training file>\n");
        optionsText.append("\tSets training file.\n");
        optionsText.append("-T <name of test file>\n");
        optionsText.append("\tSets test file. If missing, a cross-validation will be performed\n");
        optionsText.append("\ton the training data.\n");
        optionsText.append("-c <class index>\n");
        optionsText.append("\tSets index of class attribute (default: last).\n");
        optionsText.append("-x <number of folds>\n");
        optionsText.append("\tSets number of folds for cross-validation (default: 10).\n");
        optionsText.append("-no-cv\n");
        optionsText.append("\tDo not perform any cross validation.\n");
        optionsText.append("-split-percentage <percentage>\n");
        optionsText.append("\tSets the percentage for the train/test set split, e.g., 66.\n");
        optionsText.append("-preserve-order\n");
        optionsText.append("\tPreserves the order in the percentage split.\n");
        optionsText.append("-s <random number seed>\n");
        optionsText.append("\tSets random number seed for cross-validation or percentage split\n");
        optionsText.append("\t(default: 1).\n");
        optionsText.append("-m <name of file with cost matrix>\n");
        optionsText.append("\tSets file with cost matrix.\n");
        optionsText.append("-l <name of input file>\n");
        optionsText.append("\tSets model input file. In case the filename ends with '.xml',\n");
        optionsText.append("\ta PMML file is loaded or, if that fails, options are loaded\n");
        optionsText.append("\tfrom the XML file.\n");
        optionsText.append("-d <name of output file>\n");
        optionsText.append("\tSets model output file. In case the filename ends with '.xml',\n");
        optionsText.append("\tonly the options are saved to the XML file, not the model.\n");
        optionsText.append("-v\n");
        optionsText.append("\tOutputs no statistics for training data.\n");
        optionsText.append("-o\n");
        optionsText.append("\tOutputs statistics only, not the classifier.\n");
        optionsText.append("-i\n");
        optionsText.append("\tOutputs detailed information-retrieval");
        optionsText.append(" statistics for each class.\n");
        optionsText.append("-k\n");
        optionsText.append("\tOutputs information-theoretic statistics.\n");
        optionsText.append("-p <attribute range>\n");
        optionsText.append("\tOnly outputs predictions for test instances (or the train\n"
                + "\tinstances if no test instances provided and -no-cv is used),\n"
                + "\talong with attributes (0 for none).\n");
        optionsText.append("-distribution\n");
        optionsText.append("\tOutputs the distribution instead of only the prediction\n");
        optionsText.append("\tin conjunction with the '-p' option (only nominal classes).\n");
        optionsText.append("-r\n");
        optionsText.append("\tOnly outputs cumulative margin distribution.\n");
        if (classifier instanceof Sourcable) {
            optionsText.append("-z <class name>\n");
            optionsText.append("\tOnly outputs the source representation"
                    + " of the classifier,\n\tgiving it the supplied" + " name.\n");
        }
        if (classifier instanceof Drawable) {
            optionsText.append("-g\n");
            optionsText.append("\tOnly outputs the graph representation" + " of the classifier.\n");
        }
        optionsText.append("-xml filename | xml-string\n");
        optionsText.append("\tRetrieves the options from the XML-data instead of the " + "command line.\n");
        optionsText.append("-threshold-file <file>\n");
        optionsText.append("\tThe file to save the threshold data to.\n"
                + "\tThe format is determined by the extensions, e.g., '.arff' for ARFF \n"
                + "\tformat or '.csv' for CSV.\n");
        optionsText.append("-threshold-label <label>\n");
        optionsText.append(
                "\tThe class label to determine the threshold data for\n" + "\t(default is the first label)\n");

        // Get scheme-specific options
        if (classifier instanceof OptionHandler) {
            optionsText.append("\nOptions specific to " + classifier.getClass().getName() + ":\n\n");
            Enumeration enu = ((OptionHandler) classifier).listOptions();
            while (enu.hasMoreElements()) {
                Option option = (Option) enu.nextElement();
                optionsText.append(option.synopsis() + '\n');
                optionsText.append(option.description() + "\n");
            }
        }

        // Get global information (if available)
        if (globalInfo) {
            try {
                String gi = getGlobalInfo(classifier);
                optionsText.append(gi);
            } catch (Exception ex) {
                // quietly ignore
            }
        }
        return optionsText.toString();
    }

    /**
     * Return the global info (if it exists) for the supplied classifier
     * 
     * @param classifier the classifier to get the global info for
     * @return the global info (synopsis) for the classifier
     * @throws Exception if there is a problem reflecting on the classifier
     */
    protected static String getGlobalInfo(Classifier classifier) throws Exception {
        BeanInfo bi = Introspector.getBeanInfo(classifier.getClass());
        MethodDescriptor[] methods;
        methods = bi.getMethodDescriptors();
        Object[] args = {};
        String result = "\nSynopsis for " + classifier.getClass().getName() + ":\n\n";

        for (MethodDescriptor method : methods) {
            String name = method.getDisplayName();
            Method meth = method.getMethod();
            if (name.equals("globalInfo")) {
                String globalInfo = (String) (meth.invoke(classifier, args));
                result += globalInfo;
                break;
            }
        }

        return result;
    }

    /**
     * Method for generating indices for the confusion matrix.
     * 
     * @param num integer to format
     * @param IDChars the characters to use
     * @param IDWidth the width of the entry
     * @return the formatted integer as a string
     */
    protected String num2ShortID(int num, char[] IDChars, int IDWidth) {

        char ID[] = new char[IDWidth];
        int i;

        for (i = IDWidth - 1; i >= 0; i--) {
            ID[i] = IDChars[num % IDChars.length];
            num = num / IDChars.length - 1;
            if (num < 0) {
                break;
            }
        }
        for (i--; i >= 0; i--) {
            ID[i] = ' ';
        }

        return new String(ID);
    }

    /**
     * Convert a single prediction into a probability distribution with all zero
     * probabilities except the predicted value which has probability 1.0;
     * 
     * @param predictedClass the index of the predicted class
     * @return the probability distribution
     */
    protected double[] makeDistribution(double predictedClass) {

        double[] result = new double[m_NumClasses];
        if (Instance.isMissingValue(predictedClass)) {
            return result;
        }
        if (m_ClassIsNominal) {
            result[(int) predictedClass] = 1.0;
        } else {
            result[0] = predictedClass;
        }
        return result;
    }

    /**
     * Updates all the statistics about a classifiers performance for the current
     * test instance.
     * 
     * @param predictedDistribution the probabilities assigned to each class
     * @param instance the instance to be classified
     * @throws Exception if the class of the instance is not set
     */
    protected void updateStatsForClassifier(double[] predictedDistribution, Instance instance) throws Exception {

        int actualClass = (int) instance.classValue();

        if (!instance.classIsMissing()) {
            updateMargins(predictedDistribution, actualClass, instance.weight());

            // Determine the predicted class (doesn't detect multiple
            // classifications)
            int predictedClass = -1;
            double bestProb = 0.0;
            for (int i = 0; i < m_NumClasses; i++) {
                if (predictedDistribution[i] > bestProb) {
                    predictedClass = i;
                    bestProb = predictedDistribution[i];
                }
            }

            m_WithClass += instance.weight();

            // Determine misclassification cost
            if (m_CostMatrix != null) {
                if (predictedClass < 0) {
                    // For missing predictions, we assume the worst possible cost.
                    // This is pretty harsh.
                    // Perhaps we could take the negative of the cost of a correct
                    // prediction (-m_CostMatrix.getElement(actualClass,actualClass)),
                    // although often this will be zero
                    m_TotalCost += instance.weight() * m_CostMatrix.getMaxCost(actualClass, instance);
                } else {
                    m_TotalCost += instance.weight()
                            * m_CostMatrix.getElement(actualClass, predictedClass, instance);
                }
            }

            // Update counts when no class was predicted
            if (predictedClass < 0) {
                m_Unclassified += instance.weight();
                return;
            }

            double predictedProb = Math.max(MIN_SF_PROB, predictedDistribution[actualClass]);
            double priorProb = Math.max(MIN_SF_PROB, m_ClassPriors[actualClass] / m_ClassPriorsSum);
            if (predictedProb >= priorProb) {
                m_SumKBInfo += (Utils.log2(predictedProb) - Utils.log2(priorProb)) * instance.weight();
            } else {
                m_SumKBInfo -= (Utils.log2(1.0 - predictedProb) - Utils.log2(1.0 - priorProb)) * instance.weight();
            }

            m_SumSchemeEntropy -= Utils.log2(predictedProb) * instance.weight();
            m_SumPriorEntropy -= Utils.log2(priorProb) * instance.weight();

            updateNumericScores(predictedDistribution, makeDistribution(instance.classValue()), instance.weight());

            // Update other stats
            m_ConfusionMatrix[actualClass][predictedClass] += instance.weight();
            if (predictedClass != actualClass) {
                m_Incorrect += instance.weight();
            } else {
                m_Correct += instance.weight();
            }
        } else {
            m_MissingClass += instance.weight();
        }
    }

    /**
     * Updates all the statistics about a predictors performance for the current
     * test instance.
     * 
     * @param predictedValue the numeric value the classifier predicts
     * @param instance the instance to be classified
     * @throws Exception if the class of the instance is not set
     */
    protected void updateStatsForPredictor(double predictedValue, Instance instance) throws Exception {

        if (!instance.classIsMissing()) {

            // Update stats
            m_WithClass += instance.weight();
            if (Instance.isMissingValue(predictedValue)) {
                m_Unclassified += instance.weight();
                return;
            }
            m_SumClass += instance.weight() * instance.classValue();
            m_SumSqrClass += instance.weight() * instance.classValue() * instance.classValue();
            m_SumClassPredicted += instance.weight() * instance.classValue() * predictedValue;
            m_SumPredicted += instance.weight() * predictedValue;
            m_SumSqrPredicted += instance.weight() * predictedValue * predictedValue;

            if (m_ErrorEstimator == null) {
                setNumericPriorsFromBuffer();
            }
            double predictedProb = Math.max(m_ErrorEstimator.getProbability(predictedValue - instance.classValue()),
                    MIN_SF_PROB);
            double priorProb = Math.max(m_PriorErrorEstimator.getProbability(instance.classValue()), MIN_SF_PROB);

            m_SumSchemeEntropy -= Utils.log2(predictedProb) * instance.weight();
            m_SumPriorEntropy -= Utils.log2(priorProb) * instance.weight();
            m_ErrorEstimator.addValue(predictedValue - instance.classValue(), instance.weight());

            updateNumericScores(makeDistribution(predictedValue), makeDistribution(instance.classValue()),
                    instance.weight());

        } else {
            m_MissingClass += instance.weight();
        }
    }

    /**
     * Update the cumulative record of classification margins
     * 
     * @param predictedDistribution the probability distribution predicted for the
     *          current instance
     * @param actualClass the index of the actual instance class
     * @param weight the weight assigned to the instance
     */
    protected void updateMargins(double[] predictedDistribution, int actualClass, double weight) {

        double probActual = predictedDistribution[actualClass];
        double probNext = 0;

        for (int i = 0; i < m_NumClasses; i++) {
            if ((i != actualClass) && (predictedDistribution[i] > probNext)) {
                probNext = predictedDistribution[i];
            }
        }

        double margin = probActual - probNext;
        int bin = (int) ((margin + 1.0) / 2.0 * k_MarginResolution);
        m_MarginCounts[bin] += weight;
    }

    /**
     * Update the numeric accuracy measures. For numeric classes, the accuracy is
     * between the actual and predicted class values. For nominal classes, the
     * accuracy is between the actual and predicted class probabilities.
     * 
     * @param predicted the predicted values
     * @param actual the actual value
     * @param weight the weight associated with this prediction
     */
    protected void updateNumericScores(double[] predicted, double[] actual, double weight) {

        double diff;
        double sumErr = 0, sumAbsErr = 0, sumSqrErr = 0;
        double sumPriorAbsErr = 0, sumPriorSqrErr = 0;
        for (int i = 0; i < m_NumClasses; i++) {
            diff = predicted[i] - actual[i];
            sumErr += diff;
            sumAbsErr += Math.abs(diff);
            sumSqrErr += diff * diff;
            diff = (m_ClassPriors[i] / m_ClassPriorsSum) - actual[i];
            sumPriorAbsErr += Math.abs(diff);
            sumPriorSqrErr += diff * diff;
        }
        m_SumErr += weight * sumErr / m_NumClasses;
        m_SumAbsErr += weight * sumAbsErr / m_NumClasses;
        m_SumSqrErr += weight * sumSqrErr / m_NumClasses;
        m_SumPriorAbsErr += weight * sumPriorAbsErr / m_NumClasses;
        m_SumPriorSqrErr += weight * sumPriorSqrErr / m_NumClasses;
    }

    /**
     * Adds a numeric (non-missing) training class value and weight to the buffer
     * of stored values.
     * 
     * @param classValue the class value
     * @param weight the instance weight
     */
    protected void addNumericTrainClass(double classValue, double weight) {

        if (m_TrainClassVals == null) {
            m_TrainClassVals = new double[100];
            m_TrainClassWeights = new double[100];
        }
        if (m_NumTrainClassVals == m_TrainClassVals.length) {
            double[] temp = new double[m_TrainClassVals.length * 2];
            System.arraycopy(m_TrainClassVals, 0, temp, 0, m_TrainClassVals.length);
            m_TrainClassVals = temp;

            temp = new double[m_TrainClassWeights.length * 2];
            System.arraycopy(m_TrainClassWeights, 0, temp, 0, m_TrainClassWeights.length);
            m_TrainClassWeights = temp;
        }
        m_TrainClassVals[m_NumTrainClassVals] = classValue;
        m_TrainClassWeights[m_NumTrainClassVals] = weight;
        m_NumTrainClassVals++;
    }

    /**
     * Sets up the priors for numeric class attributes from the training class
     * values that have been seen so far.
     */
    protected void setNumericPriorsFromBuffer() {

        double numPrecision = 0.01; // Default value
        if (m_NumTrainClassVals > 1) {
            double[] temp = new double[m_NumTrainClassVals];
            System.arraycopy(m_TrainClassVals, 0, temp, 0, m_NumTrainClassVals);
            int[] index = Utils.sort(temp);
            double lastVal = temp[index[0]];
            double deltaSum = 0;
            int distinct = 0;
            for (int i = 1; i < temp.length; i++) {
                double current = temp[index[i]];
                if (current != lastVal) {
                    deltaSum += current - lastVal;
                    lastVal = current;
                    distinct++;
                }
            }
            if (distinct > 0) {
                numPrecision = deltaSum / distinct;
            }
        }
        m_PriorErrorEstimator = new KernelEstimator(numPrecision);
        m_ErrorEstimator = new KernelEstimator(numPrecision);
        m_ClassPriors[0] = m_ClassPriorsSum = 0;
        for (int i = 0; i < m_NumTrainClassVals; i++) {
            m_ClassPriors[0] += m_TrainClassVals[i] * m_TrainClassWeights[i];
            m_ClassPriorsSum += m_TrainClassWeights[i];
            m_PriorErrorEstimator.addValue(m_TrainClassVals[i], m_TrainClassWeights[i]);
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision: 10974 $");
    }

}