Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * LabelBasedAUC.java * Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece */ package mulan.evaluation.measure; import weka.classifiers.evaluation.NominalPrediction; import weka.core.FastVector; /** * Implementation of the label-based macro precision measure. * * @author Grigorios Tsoumakas * @version 2010.12.04 */ public abstract class LabelBasedAUC extends ConfidenceMeasureBase { /** The number of labels */ protected int numOfLabels; /** The predictions for each label */ protected FastVector[] m_Predictions; /** The predictions for all labels */ protected FastVector all_Predictions; /** * Creates a new instance of this class * * @param numOfLabels the number of labels */ public LabelBasedAUC(int numOfLabels) { this.numOfLabels = numOfLabels; m_Predictions = new FastVector[numOfLabels]; for (int labelIndex = 0; labelIndex < numOfLabels; labelIndex++) { m_Predictions[labelIndex] = new FastVector(); } all_Predictions = new FastVector(); } public void reset() { for (int labelIndex = 0; labelIndex < numOfLabels; labelIndex++) { m_Predictions[labelIndex] = new FastVector(); } all_Predictions = new FastVector(); } public double getIdealValue() { return 1; } protected void updateConfidence(double[] confidences, boolean[] truth) { for (int labelIndex = 0; labelIndex < numOfLabels; labelIndex++) { int classValue; boolean actual = truth[labelIndex]; if (actual) { classValue = 1; } else { classValue = 0; } double[] dist = new double[2]; dist[1] = confidences[labelIndex]; dist[0] = 1 - dist[1]; m_Predictions[labelIndex].addElement(new NominalPrediction(classValue, dist, 1)); all_Predictions.addElement(new NominalPrediction(classValue, dist, 1)); } } }