Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ConfidenceLabelBasedMeasures.java * Copyright (C) 2009 Aristotle University of Thessaloniki, Thessaloniki, Greece * */package com.evaluation; import com.output.MultiLabelOutput; import weka.classifiers.evaluation.NominalPrediction; import weka.classifiers.evaluation.ThresholdCurve; import weka.core.FastVector; import weka.core.Instances; import weka.core.Utils; public class ConfidenceLabelBasedMeasures { double[] auc = new double[2]; double[] labelAUC; public ConfidenceLabelBasedMeasures(MultiLabelOutput[] output, boolean[][] trueLabels) { computeMeasures(output, trueLabels); } ConfidenceLabelBasedMeasures(ConfidenceLabelBasedMeasures[] arrayOfMeasures) { int numLabels = arrayOfMeasures[0].labelAUC.length; labelAUC = new double[numLabels]; for (ConfidenceLabelBasedMeasures measures : arrayOfMeasures) { for (Averaging type : Averaging.values()) { auc[type.ordinal()] += measures.getAUC(type); } for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) { labelAUC[labelIndex] += measures.getLabelAUC(labelIndex); } } int arrayLength = arrayOfMeasures.length; for (Averaging type : Averaging.values()) { auc[type.ordinal()] /= arrayLength; } for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) { labelAUC[labelIndex] /= arrayLength; } } private void computeMeasures(MultiLabelOutput[] output, boolean[][] trueLabels) { int numLabels = trueLabels[0].length; // AUC FastVector[] m_Predictions = new FastVector[numLabels]; for (int j = 0; j < numLabels; j++) m_Predictions[j] = new FastVector(); FastVector all_Predictions = new FastVector(); int numInstances = output.length; for (int instanceIndex = 0; instanceIndex < numInstances; instanceIndex++) { double[] confidences = output[instanceIndex].getConfidences(); for (int labelIndex = 0; labelIndex < numLabels; labelIndex++) { int classValue; boolean actual = trueLabels[instanceIndex][labelIndex]; if (actual) classValue = 1; else classValue = 0; double[] dist = new double[2]; dist[1] = confidences[labelIndex]; dist[0] = 1 - dist[1]; m_Predictions[labelIndex].addElement(new NominalPrediction(classValue, dist, 1)); all_Predictions.addElement(new NominalPrediction(classValue, dist, 1)); } } labelAUC = new double[numLabels]; for (int i = 0; i < numLabels; i++) { ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(m_Predictions[i], 1); labelAUC[i] = ThresholdCurve.getROCArea(result); } auc[Averaging.MACRO.ordinal()] = Utils.mean(labelAUC); ThresholdCurve tc = new ThresholdCurve(); Instances result = tc.getCurve(all_Predictions, 1); auc[Averaging.MICRO.ordinal()] = ThresholdCurve.getROCArea(result); } public double getLabelAUC(int label) { return labelAUC[label]; } public double getAUC(Averaging averagingType) { return auc[averagingType.ordinal()]; } }