controller.NaiveBayesServlet.java Source code

Java tutorial

Introduction

Here is the source code for controller.NaiveBayesServlet.java

Source

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package controller;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import model.Limits;
import util.FormatFiles;
import weka.associations.Apriori;
import weka.classifiers.Evaluation;
import weka.classifiers.bayes.NaiveBayes;
import weka.classifiers.trees.J48;
import weka.core.Instance;
import weka.core.Instances;

/**
 *
 * @author joao
 */
@WebServlet(name = "NaiveBayes", urlPatterns = { "/NaiveBayes" })
public class NaiveBayesServlet extends HttpServlet {

    RequestDispatcher rd;

    @Override
    protected void doGet(HttpServletRequest request, HttpServletResponse response)
            throws ServletException, IOException {
        request.setCharacterEncoding("UTF-8");
        String action = request.getParameter("action");

        switch (action) {
        case "view": {
            int corrects = Integer.parseInt(request.getParameter("corrects"));
            int totalTest = Integer.parseInt(request.getParameter("totalTest"));
            int totalTrainig = Integer.parseInt(request.getParameter("totalTrainig"));
            int truePositive = Integer.parseInt(request.getParameter("truePositive"));
            int trueNegative = Integer.parseInt(request.getParameter("trueNegative"));
            int falsePositive = Integer.parseInt(request.getParameter("falsePositive"));
            int falseNegative = Integer.parseInt(request.getParameter("falseNegative"));
            String fileName = request.getParameter("fileName");

            request.setAttribute("corrects", corrects);
            request.setAttribute("totalTest", totalTest);
            request.setAttribute("totalTrainig", totalTrainig);
            request.setAttribute("fileName", fileName);
            request.setAttribute("truePositive", truePositive);
            request.setAttribute("trueNegative", trueNegative);
            request.setAttribute("falsePositive", falsePositive);
            request.setAttribute("falseNegative", falseNegative);

            rd = request.getRequestDispatcher("naiveBayesView.jsp");
            rd.forward(request, response);
            break;
        }
        case "download": {
            String fileName = request.getParameter("fileName");

            String dir = "/data/";
            String path = getServletContext().getRealPath(dir);

            File file = new File(path + "/" + fileName);
            response.setContentType("text/txt");
            response.addHeader("Content-Disposition", "attachment; filename=" + fileName);
            response.setContentLength((int) file.length());

            FileInputStream fileInputStream = new FileInputStream(file);
            OutputStream responseOutputStream = response.getOutputStream();
            int bytes;
            while ((bytes = fileInputStream.read()) != -1) {
                responseOutputStream.write(bytes);
            }
            break;
        }
        }

    }

    @Override
    protected void doPost(HttpServletRequest request, HttpServletResponse response)
            throws ServletException, IOException {
        request.setCharacterEncoding("UTF-8");
        String dir = "/data/";
        String path = getServletContext().getRealPath(dir);

        String action = request.getParameter("action");

        switch (action) {
        case "create": {
            String fileName = request.getParameter("file");

            String aux = fileName.substring(0, fileName.indexOf("."));
            String pathInput = path + "/" + request.getParameter("file");
            String pathTrainingOutput = path + "/" + aux + "-training-arff.txt";
            String pathTestOutput = path + "/" + aux + "-test-arff.txt";
            String pathNaivebayes = path + "/" + aux + "-naiveBayes.txt";

            String name = request.getParameter("name");
            int range = Integer.parseInt(request.getParameter("range"));

            int size = Integer.parseInt(request.getParameter("counter"));
            String[] columns = new String[size];
            String[] types = new String[size];
            int[] positions = new int[size];
            int counter = 0;

            for (int i = 0; i < size; i++) {
                if (request.getParameter("column-" + (i + 1)) != null) {
                    columns[counter] = request.getParameter("column-" + (i + 1));
                    types[counter] = request.getParameter("type-" + (i + 1));
                    positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1)));
                    counter++;
                }
            }

            FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types,
                    positions, counter, range);

            try {
                NaiveBayes naiveBayes = new NaiveBayes();

                BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput));
                Instances instancesTraining = new Instances(readerTraining);
                instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1);

                naiveBayes.buildClassifier(instancesTraining);

                BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput));
                //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput));
                Instances instancesTest = new Instances(readerTest);
                instancesTest.setClassIndex(instancesTest.numAttributes() - 1);

                Evaluation eval = new Evaluation(instancesTraining);
                eval.evaluateModel(naiveBayes, instancesTest);

                int corrects = 0;
                int truePositive = 0;
                int trueNegative = 0;
                int falsePositive = 0;
                int falseNegative = 0;

                for (int i = 0; i < instancesTest.size(); i++) {
                    Instance instance = instancesTest.get(i);
                    double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1));
                    double classification = naiveBayes.classifyInstance(instance);

                    if (correctValue == classification) {
                        corrects++;
                    }
                    if (correctValue == 1 && classification == 1) {
                        truePositive++;
                    }
                    if (correctValue == 1 && classification == 0) {
                        falseNegative++;
                    }
                    if (correctValue == 0 && classification == 1) {
                        falsePositive++;
                    }
                    if (correctValue == 0 && classification == 0) {
                        trueNegative++;
                    }
                }

                PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathNaivebayes, false)));

                writer.println(naiveBayes.toString());

                writer.println("");
                writer.println("");
                writer.println("Results");
                writer.println(eval.toSummaryString());

                writer.close();

                response.sendRedirect(
                        "NaiveBayes?action=view&corrects=" + corrects + "&totalTest=" + instancesTest.size()
                                + "&totalTrainig=" + instancesTraining.size() + "&range=" + range + "&truePositive="
                                + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive
                                + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-naiveBayes.txt");

            } catch (Exception e) {
                System.out.println(e.getMessage());
                response.sendRedirect("Navigation?action=naiveBayes");
            }

            break;
        }
        default:
            response.sendError(404);
        }

    }

    @Override
    public String getServletInfo() {
        return "Short description";
    }// </editor-fold>

}