Java tutorial
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ package controller; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.OutputStream; import java.io.PrintWriter; import java.util.logging.Level; import java.util.logging.Logger; import javax.servlet.RequestDispatcher; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; import model.Limits; import util.FormatFiles; import weka.associations.Apriori; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.trees.J48; import weka.core.Instance; import weka.core.Instances; /** * * @author joao */ @WebServlet(name = "NaiveBayes", urlPatterns = { "/NaiveBayes" }) public class NaiveBayesServlet extends HttpServlet { RequestDispatcher rd; @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { request.setCharacterEncoding("UTF-8"); String action = request.getParameter("action"); switch (action) { case "view": { int corrects = Integer.parseInt(request.getParameter("corrects")); int totalTest = Integer.parseInt(request.getParameter("totalTest")); int totalTrainig = Integer.parseInt(request.getParameter("totalTrainig")); int truePositive = Integer.parseInt(request.getParameter("truePositive")); int trueNegative = Integer.parseInt(request.getParameter("trueNegative")); int falsePositive = Integer.parseInt(request.getParameter("falsePositive")); int falseNegative = Integer.parseInt(request.getParameter("falseNegative")); String fileName = request.getParameter("fileName"); request.setAttribute("corrects", corrects); request.setAttribute("totalTest", totalTest); request.setAttribute("totalTrainig", totalTrainig); request.setAttribute("fileName", fileName); request.setAttribute("truePositive", truePositive); request.setAttribute("trueNegative", trueNegative); request.setAttribute("falsePositive", falsePositive); request.setAttribute("falseNegative", falseNegative); rd = request.getRequestDispatcher("naiveBayesView.jsp"); rd.forward(request, response); break; } case "download": { String fileName = request.getParameter("fileName"); String dir = "/data/"; String path = getServletContext().getRealPath(dir); File file = new File(path + "/" + fileName); response.setContentType("text/txt"); response.addHeader("Content-Disposition", "attachment; filename=" + fileName); response.setContentLength((int) file.length()); FileInputStream fileInputStream = new FileInputStream(file); OutputStream responseOutputStream = response.getOutputStream(); int bytes; while ((bytes = fileInputStream.read()) != -1) { responseOutputStream.write(bytes); } break; } } } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { request.setCharacterEncoding("UTF-8"); String dir = "/data/"; String path = getServletContext().getRealPath(dir); String action = request.getParameter("action"); switch (action) { case "create": { String fileName = request.getParameter("file"); String aux = fileName.substring(0, fileName.indexOf(".")); String pathInput = path + "/" + request.getParameter("file"); String pathTrainingOutput = path + "/" + aux + "-training-arff.txt"; String pathTestOutput = path + "/" + aux + "-test-arff.txt"; String pathNaivebayes = path + "/" + aux + "-naiveBayes.txt"; String name = request.getParameter("name"); int range = Integer.parseInt(request.getParameter("range")); int size = Integer.parseInt(request.getParameter("counter")); String[] columns = new String[size]; String[] types = new String[size]; int[] positions = new int[size]; int counter = 0; for (int i = 0; i < size; i++) { if (request.getParameter("column-" + (i + 1)) != null) { columns[counter] = request.getParameter("column-" + (i + 1)); types[counter] = request.getParameter("type-" + (i + 1)); positions[counter] = Integer.parseInt(request.getParameter("position-" + (i + 1))); counter++; } } FormatFiles.convertTxtToArff(pathInput, pathTrainingOutput, pathTestOutput, name, columns, types, positions, counter, range); try { NaiveBayes naiveBayes = new NaiveBayes(); BufferedReader readerTraining = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTraining = new Instances(readerTraining); instancesTraining.setClassIndex(instancesTraining.numAttributes() - 1); naiveBayes.buildClassifier(instancesTraining); BufferedReader readerTest = new BufferedReader(new FileReader(pathTestOutput)); //BufferedReader readerTest = new BufferedReader(new FileReader(pathTrainingOutput)); Instances instancesTest = new Instances(readerTest); instancesTest.setClassIndex(instancesTest.numAttributes() - 1); Evaluation eval = new Evaluation(instancesTraining); eval.evaluateModel(naiveBayes, instancesTest); int corrects = 0; int truePositive = 0; int trueNegative = 0; int falsePositive = 0; int falseNegative = 0; for (int i = 0; i < instancesTest.size(); i++) { Instance instance = instancesTest.get(i); double correctValue = instance.value(instance.attribute(instancesTest.numAttributes() - 1)); double classification = naiveBayes.classifyInstance(instance); if (correctValue == classification) { corrects++; } if (correctValue == 1 && classification == 1) { truePositive++; } if (correctValue == 1 && classification == 0) { falseNegative++; } if (correctValue == 0 && classification == 1) { falsePositive++; } if (correctValue == 0 && classification == 0) { trueNegative++; } } PrintWriter writer = new PrintWriter(new BufferedWriter(new FileWriter(pathNaivebayes, false))); writer.println(naiveBayes.toString()); writer.println(""); writer.println(""); writer.println("Results"); writer.println(eval.toSummaryString()); writer.close(); response.sendRedirect( "NaiveBayes?action=view&corrects=" + corrects + "&totalTest=" + instancesTest.size() + "&totalTrainig=" + instancesTraining.size() + "&range=" + range + "&truePositive=" + truePositive + "&trueNegative=" + trueNegative + "&falsePositive=" + falsePositive + "&falseNegative=" + falseNegative + "&fileName=" + aux + "-naiveBayes.txt"); } catch (Exception e) { System.out.println(e.getMessage()); response.sendRedirect("Navigation?action=naiveBayes"); } break; } default: response.sendError(404); } } @Override public String getServletInfo() { return "Short description"; }// </editor-fold> }