Java tutorial
import java.util.logging.Level; import java.util.logging.Logger; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.functions.SMO; import weka.classifiers.lazy.IBk; import weka.classifiers.trees.J48; import weka.core.Instances; /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ /** * * @author ferhat */ public class ClassificationClass { public Evaluation cls_svm(Instances data) { Evaluation eval = null; try { Classifier classifier; data.setClassIndex(data.numAttributes() - 1); classifier = new SMO(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; } public Evaluation cls_knn(Instances data) { Evaluation eval = null; try { Classifier classifier; data.setClassIndex(data.numAttributes() - 1); classifier = new IBk(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.weightedFMeasure()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; } public Evaluation cls_naivebayes(Instances data) { Evaluation eval = null; try { Classifier classifier; PreparingSteps preparingSteps = new PreparingSteps(); data.setClassIndex(data.numAttributes() - 1); classifier = new NaiveBayes(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.toSummaryString()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; } public Evaluation cls_c4_5(Instances data) { Evaluation eval = null; try { Classifier classifier; PreparingSteps preparingSteps = new PreparingSteps(); data.setClassIndex(data.numAttributes() - 1); classifier = new J48(); classifier.buildClassifier(data); eval = new Evaluation(data); eval.evaluateModel(classifier, data); System.out.println(eval.toSummaryString()); } catch (Exception ex) { Logger.getLogger(ClassificationClass.class.getName()).log(Level.SEVERE, null, ex); } return eval; } }