List of usage examples for javax.media.j3d TransformGroup ALLOW_TRANSFORM_WRITE
int ALLOW_TRANSFORM_WRITE
To view the source code for javax.media.j3d TransformGroup ALLOW_TRANSFORM_WRITE.
Click Source Link
From source file:IntersectTest.java
public IntersectInfoBehavior(Canvas3D canvas3D, BranchGroup branchGroup, float size) { pickCanvas = new PickCanvas(canvas3D, branchGroup); pickCanvas.setTolerance(5.0f);// w w w. ja va2 s. c o m pickCanvas.setMode(PickCanvas.GEOMETRY_INTERSECT_INFO); this.size = size; // Create an Appearance. redlook = new Appearance(); Color3f objColor = new Color3f(0.5f, 0.0f, 0.0f); Color3f black = new Color3f(0.0f, 0.0f, 0.0f); Color3f white = new Color3f(1.0f, 1.0f, 1.0f); redlook.setMaterial(new Material(objColor, black, objColor, white, 50.0f)); redlook.setCapability(Appearance.ALLOW_MATERIAL_WRITE); redlookwf = new Appearance(); redlookwf.setMaterial(new Material(objColor, black, objColor, white, 50.0f)); PolygonAttributes pa = new PolygonAttributes(); pa.setPolygonMode(pa.POLYGON_LINE); pa.setCullFace(pa.CULL_NONE); redlookwf.setPolygonAttributes(pa); oldlook = new Appearance(); objColor = new Color3f(1.0f, 1.0f, 1.0f); oldlook.setMaterial(new Material(objColor, black, objColor, white, 50.0f)); greenlook = new Appearance(); objColor = new Color3f(0.0f, 0.8f, 0.0f); greenlook.setMaterial(new Material(objColor, black, objColor, white, 50.0f)); bluelook = new Appearance(); objColor = new Color3f(0.0f, 0.0f, 0.8f); bluelook.setMaterial(new Material(objColor, black, objColor, white, 50.0f)); for (int i = 0; i < 6; i++) { switch (i) { case 0: sph[i] = new Sphere(size * 1.15f, redlook); break; case 1: sph[i] = new Sphere(size * 1.1f, greenlook); break; default: sph[i] = new Sphere(size, bluelook); break; } sph[i].setPickable(false); sphTrans[i] = new TransformGroup(); sphTrans[i].setCapability(TransformGroup.ALLOW_TRANSFORM_READ); sphTrans[i].setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Add sphere, transform branchGroup.addChild(sphTrans[i]); sphTrans[i].addChild(sph[i]); } }
From source file:LightTest.java
public Group createGeometry() { Point3f pos = new Point3f(); ((PointLight) m_Light).getPosition(pos); m_TransformGroup = new TransformGroup(); m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); Transform3D t3d = new Transform3D(); t3d.setTranslation(new Vector3f(pos.x, pos.y, pos.z)); m_TransformGroup.setTransform(t3d);/* ww w . j a va2 s . co m*/ m_Sphere = new Sphere(0.2f, Primitive.ENABLE_APPEARANCE_MODIFY | Primitive.GENERATE_NORMALS, 16); m_TransformGroup.addChild(m_Sphere); m_TransformGroup.addChild(super.createGeometry()); return (Group) m_TransformGroup; }
From source file:ExText.java
/** * Builds the 3D universe by constructing a virtual universe (via * SimpleUniverse), a view platform (via SimpleUniverse), and a view (via * SimpleUniverse). A headlight is added and a set of behaviors initialized * to handle navigation types./*from w w w.j a v a 2 s .c o m*/ */ protected void buildUniverse() { // // Create a SimpleUniverse object, which builds: // // - a Locale using the given hi-res coordinate origin // // - a ViewingPlatform which in turn builds: // - a MultiTransformGroup with which to move the // the ViewPlatform about // // - a ViewPlatform to hold the view // // - a BranchGroup to hold avatar geometry (if any) // // - a BranchGroup to hold view platform // geometry (if any) // // - a Viewer which in turn builds: // - a PhysicalBody which characterizes the user's // viewing preferences and abilities // // - a PhysicalEnvironment which characterizes the // user's rendering hardware and software // // - a JavaSoundMixer which initializes sound // support within the 3D environment // // - a View which renders the scene into a Canvas3D // // All of these actions could be done explicitly, but // using the SimpleUniverse utilities simplifies the code. // if (debug) System.err.println("Building scene graph..."); SimpleUniverse universe = new SimpleUniverse(null, // Hi-res coordinate // for the origin - // use default 1, // Number of transforms in MultiTransformGroup exampleCanvas, // Canvas3D into which to draw null); // URL for user configuration file - use defaults // // Get the viewer and create an audio device so that // sound will be enabled in this content. // Viewer viewer = universe.getViewer(); viewer.createAudioDevice(); // // Get the viewing platform created by SimpleUniverse. // From that platform, get the inner-most TransformGroup // in the MultiTransformGroup. That inner-most group // contains the ViewPlatform. It is this inner-most // TransformGroup we need in order to: // // - add a "headlight" that always aims forward from // the viewer // // - change the viewing direction in a "walk" style // // The inner-most TransformGroup's transform will be // changed by the walk behavior (when enabled). // ViewingPlatform viewingPlatform = universe.getViewingPlatform(); exampleViewTransform = viewingPlatform.getViewPlatformTransform(); // // Create a "headlight" as a forward-facing directional light. // Set the light's bounds to huge. Since we want the light // on the viewer's "head", we need the light within the // TransformGroup containing the ViewPlatform. The // ViewingPlatform class creates a handy hook to do this // called "platform geometry". The PlatformGeometry class is // subclassed off of BranchGroup, and is intended to contain // a description of the 3D platform itself... PLUS a headlight! // So, to add the headlight, create a new PlatformGeometry group, // add the light to it, then add that platform geometry to the // ViewingPlatform. // BoundingSphere allBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100000.0); PlatformGeometry pg = new PlatformGeometry(); headlight = new DirectionalLight(); headlight.setColor(White); headlight.setDirection(new Vector3f(0.0f, 0.0f, -1.0f)); headlight.setInfluencingBounds(allBounds); headlight.setCapability(Light.ALLOW_STATE_WRITE); pg.addChild(headlight); viewingPlatform.setPlatformGeometry(pg); // // Create the 3D content BranchGroup, containing: // // - a TransformGroup who's transform the examine behavior // will change (when enabled). // // - 3D geometry to view // // Build the scene root BranchGroup sceneRoot = new BranchGroup(); // Build a transform that we can modify exampleSceneTransform = new TransformGroup(); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); exampleSceneTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); exampleSceneTransform.setCapability(Group.ALLOW_CHILDREN_EXTEND); // // Build the scene, add it to the transform, and add // the transform to the scene root // if (debug) System.err.println(" scene..."); Group scene = this.buildScene(); exampleSceneTransform.addChild(scene); sceneRoot.addChild(exampleSceneTransform); // // Create a pair of behaviors to implement two navigation // types: // // - "examine": a style where mouse drags rotate about // the scene's origin as if it is an object under // examination. This is similar to the "Examine" // navigation type used by VRML browsers. // // - "walk": a style where mouse drags rotate about // the viewer's center as if the viewer is turning // about to look at a scene they are in. This is // similar to the "Walk" navigation type used by // VRML browsers. // // Aim the examine behavior at the scene's TransformGroup // and add the behavior to the scene root. // // Aim the walk behavior at the viewing platform's // TransformGroup and add the behavior to the scene root. // // Enable one (and only one!) of the two behaviors // depending upon the current navigation type. // examineBehavior = new ExamineViewerBehavior(exampleSceneTransform, // Transform // gorup // to // modify exampleFrame); // Parent frame for cusor changes examineBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(examineBehavior); walkBehavior = new WalkViewerBehavior(exampleViewTransform, // Transform // group to // modify exampleFrame); // Parent frame for cusor changes walkBehavior.setSchedulingBounds(allBounds); sceneRoot.addChild(walkBehavior); if (navigationType == Walk) { examineBehavior.setEnable(false); walkBehavior.setEnable(true); } else { examineBehavior.setEnable(true); walkBehavior.setEnable(false); } // // Compile the scene branch group and add it to the // SimpleUniverse. // if (shouldCompile) sceneRoot.compile(); universe.addBranchGraph(sceneRoot); reset(); }
From source file:ffx.potential.MolecularAssembly.java
/** * The MolecularAssembly BranchGroup has two TransformGroups between it and * the "base" node where geometry is attached. If the point between the two * transformations is where user rotation occurs. For example, if rotating * about the center of mass of the system, the RotToCOM transformation will * be an identity transformation (ie. none). If rotation is about some atom * or group of atoms within the system, then the RotToCOM transformation * will be a translation from that point to the COM. * * @param zero boolean/*from www . j a va 2 s .co m*/ * @return BranchGroup */ public BranchGroup createScene(boolean zero) { originToRotT3D = new Transform3D(); originToRotV3D = new Vector3d(); originToRot = new TransformGroup(originToRotT3D); branchGroup = new BranchGroup(); rotToCOM = new TransformGroup(); rotToCOMT3D = new Transform3D(); rotToCOMV3D = new Vector3d(); // Set capabilities needed for picking and moving the MolecularAssembly branchGroup.setCapability(BranchGroup.ALLOW_DETACH); originToRot.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); originToRot.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); originToRot.setCapability(TransformGroup.ENABLE_PICK_REPORTING); rotToCOM.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); rotToCOM.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Put the MolecularAssembly in the middle of the scene if (zero) { originToRotV3D.set(0.0, 0.0, 0.0); originToRotT3D.set(originToRotV3D); originToRot.setTransform(originToRotT3D); } wire = renderWire(); switchGroup = new Switch(Switch.CHILD_NONE); switchGroup.setCapability(Switch.ALLOW_SWITCH_WRITE); base = new BranchGroup(); base.setCapability(BranchGroup.ALLOW_CHILDREN_EXTEND); base.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE); childNodes = new BranchGroup(); childNodes.setCapability(BranchGroup.ALLOW_DETACH); childNodes.setCapability(BranchGroup.ALLOW_CHILDREN_EXTEND); childNodes.setCapability(BranchGroup.ALLOW_CHILDREN_WRITE); switchGroup.addChild(base); if (wire != null) { base.addChild(wire); } vrml = loadVRML(); if (vrml != null) { vrmlTG = new TransformGroup(); vrmlTd = new Transform3D(); vrmlTG.setTransform(vrmlTd); vrmlTG.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); vrmlTG.addChild(vrml); switchGroup.addChild(vrmlTG); setView(RendererCache.ViewModel.INVISIBLE, null); } switchGroup.setWhichChild(Switch.CHILD_ALL); rotToCOM.addChild(switchGroup); originToRot.addChild(rotToCOM); branchGroup.addChild(originToRot); branchGroup.compile(); return branchGroup; }
From source file:ExSound.java
private Group buildTumblingBox(float width, float height, float depth, Appearance app, int xDur, int yDur, int zDur) { BoundingSphere worldBounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), // Center 1000.0); // Extent // Build a box to tumble Shape3D box = buildBox(width, height, depth, app); // Build a set of nested transform groups. Attach // to each one a behavior that rotates around an X, // Y, or Z axis. Use different rotation speeds for // each axis to create a tumbling effect. TransformGroup outerGroup = new TransformGroup(); outerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D yAxis = new Transform3D(); Alpha alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none xDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration RotationInterpolator rot = new RotationInterpolator(alpha, // Alpha // control outerGroup, // Target transform group yAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); outerGroup.addChild(rot);//from ww w . ja v a 2 s . c om TransformGroup middleGroup = new TransformGroup(); middleGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D xAxis = new Transform3D(); xAxis.rotZ(-1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none yDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control middleGroup, // Target transform group xAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); middleGroup.addChild(rot); outerGroup.addChild(middleGroup); TransformGroup innerGroup = new TransformGroup(); innerGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); Transform3D zAxis = new Transform3D(); zAxis.rotX(1.571f); alpha = new Alpha(-1, // loop count: -1 = forever Alpha.INCREASING_ENABLE, // increasing 0, // trigger time: 0 = now 0, // delay: 0 = none zDur, // increasing duration 0, // increasing ramp duration 0, // at one (sustain) duration 0, // decreasing duration 0, // decreasing ramp duration 0); // at zero duration rot = new RotationInterpolator(alpha, // Alpha control innerGroup, // Target transform group zAxis, // Y axis rotation 0.0f, // Minimum angle 2.0f * (float) Math.PI);// Maximum angle rot.setSchedulingBounds(worldBounds); innerGroup.addChild(rot); middleGroup.addChild(innerGroup); innerGroup.addChild(box); return outerGroup; }
From source file:LightTest.java
public Group createGeometry() { m_DirectionTransformGroup = new TransformGroup(); m_DirectionTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); m_DirectionTransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); // create appearance and material for the Cone Appearance app = new Appearance(); // create the Primitive and add to the parent BranchGroup m_Cone = new Cone(0.5f, 2, Primitive.ENABLE_APPEARANCE_MODIFY | Primitive.GENERATE_NORMALS, app); m_DirectionTransformGroup.addChild(m_Cone); Group superGroup = super.createGeometry(); superGroup.addChild(m_DirectionTransformGroup); return superGroup; }
From source file:Demo3D.java
/** * Create the subgraph #2//from w ww. jav a 2s .com * * @return javax.media.j3d.BranchGroup brGr2 - the root of the subgraph #2 */ public BranchGroup mySubGraph2() { // Create the BranchGroup node brGr2 of the second subgraph. brGr2 = new BranchGroup(); // A BoundingSphere instance as general bounding region. boundsGen = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Create a Transform3D instance rot1 to perform the necessary // "static rotation" for the desired cube's position. rot1 = new Transform3D(); // Rotation of Pi/2 - arctan(1/sqrt(2)) = 0.955 rad about the // (1,0,-1)-axis passing through the origin. axe_rot = new AxisAngle4f(1.0f, 0.0f, -1.0f, 0.955f); rot1.setRotation(axe_rot); // Create the first TransformGroup node trGr2_1 and attach the // "static rotation" rot1 instance to it. trGr2_1 = new TransformGroup(rot1); // Create and attach a coordinate system to the TransformGroup node // trGr2_1 of the subgraph #2, that is to the cube. coordSyst = new CoordSyst(1.0f, 1.0f, 0.0f, // Color of the x-axis 0.0f, 0.0f, 1.0f, // Color of the y-axis 1.0f, 0.0f, 0.0f, // Color of the z-axis 0.4f); // Lenght of the 3 axes trGr2_1.addChild(coordSyst); // Create the ColorCube (Shape3D) and attach it to the // TransformGroup node trGr2_1 of the subgraph #2. colorCube = new ColorCube(0.5f); trGr2_1.addChild(colorCube); // Create the second TransformGroup node trGr2_2. trGr2_2 = new TransformGroup(); // With the ALLOW_TRANSFORM_WRITE capability, we allow the // modification of the TransformGroup's code by the behavior's // code at run time. trGr2_2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); // Attach the first node trGr2_1 to the second node trGr2_2. trGr2_2.addChild(trGr2_1); // Prepare the RotationInterpolator (Behavior) for the // cube's rotation about the y-axis. trans1 = new Transform3D(); // Create the alpha(t) function. rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 10000, 0, 0, 0, 0, 0); // Create the cube's rotation about the y-axis. rotator = new RotationInterpolator(rotationAlpha, trGr2_2, trans1, 0.0f, (float) Math.PI * 2.0f); rotator.setSchedulingBounds(boundsGen); trGr2_2.addChild(rotator); brGr2.addChild(trGr2_2); // Compile the subgraph to optimize the performances. brGr2.compile(); // Return the final version of the BranchGroup node brGr2 return brGr2; }
From source file:GearTest.java
public BranchGroup createGearBox(int toothCount) { Transform3D tempTransform = new Transform3D(); // Create the root of the branch graph BranchGroup branchRoot = createBranchEnvironment(); // Create a Transformgroup to scale all objects so they // appear in the scene. TransformGroup objScale = new TransformGroup(); Transform3D t3d = new Transform3D(); t3d.setScale(0.4);//from w w w .j ava 2 s . co m objScale.setTransform(t3d); branchRoot.addChild(objScale); // Create an Appearance. Appearance look = new Appearance(); Color3f objColor = new Color3f(0.5f, 0.5f, 0.6f); Color3f black = new Color3f(0.0f, 0.0f, 0.0f); Color3f white = new Color3f(1.0f, 1.0f, 1.0f); look.setMaterial(new Material(objColor, black, objColor, white, 100.0f)); // Create the transform group node and initialize it to the // identity. Enable the TRANSFORM_WRITE capability so that // our behavior code can modify it at runtime. Add it to the // root of the subgraph. TransformGroup gearboxTrans = new TransformGroup(); gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); gearboxTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); objScale.addChild(gearboxTrans); // Create a bounds for the mouse behavior methods BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0); // Define the shaft base information int shaftCount = 4; int secondsPerRevolution = 8000; // Create the Shaft(s) Shaft shafts[] = new Shaft[shaftCount]; TransformGroup shaftTGs[] = new TransformGroup[shaftCount]; Alpha shaftAlphas[] = new Alpha[shaftCount]; RotationInterpolator shaftRotors[] = new RotationInterpolator[shaftCount]; Transform3D shaftAxis[] = new Transform3D[shaftCount]; // Note: the following arrays we're incorporated to make changing // the gearbox easier. float shaftRatios[] = new float[shaftCount]; shaftRatios[0] = 1.0f; shaftRatios[1] = 0.5f; shaftRatios[2] = 0.75f; shaftRatios[3] = 5.0f; float shaftRadius[] = new float[shaftCount]; shaftRadius[0] = 0.2f; shaftRadius[1] = 0.2f; shaftRadius[2] = 0.2f; shaftRadius[3] = 0.2f; float shaftLength[] = new float[shaftCount]; shaftLength[0] = 1.8f; shaftLength[1] = 0.8f; shaftLength[2] = 0.8f; shaftLength[3] = 0.8f; float shaftDirection[] = new float[shaftCount]; shaftDirection[0] = 1.0f; shaftDirection[1] = -1.0f; shaftDirection[2] = 1.0f; shaftDirection[3] = -1.0f; Vector3d shaftPlacement[] = new Vector3d[shaftCount]; shaftPlacement[0] = new Vector3d(-0.75, -0.9, 0.0); shaftPlacement[1] = new Vector3d(0.75, -0.9, 0.0); shaftPlacement[2] = new Vector3d(0.75, 0.35, 0.0); shaftPlacement[3] = new Vector3d(-0.75, 0.60, -0.7); // Create the shafts. for (int i = 0; i < shaftCount; i++) { shafts[i] = new Shaft(shaftRadius[i], shaftLength[i], 25, look); } // Create a transform group node for placing each shaft for (int i = 0; i < shaftCount; i++) { shaftTGs[i] = new TransformGroup(); gearboxTrans.addChild(shaftTGs[i]); shaftTGs[i].getTransform(tempTransform); tempTransform.setTranslation(shaftPlacement[i]); shaftTGs[i].setTransform(tempTransform); shaftTGs[i].addChild(shafts[i]); } // Add rotation interpolators to rotate the shaft in the appropriate // direction and at the appropriate rate for (int i = 0; i < shaftCount; i++) { shaftAlphas[i] = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, (long) (secondsPerRevolution * shaftRatios[i]), 0, 0, 0, 0, 0); shaftAxis[i] = new Transform3D(); shaftAxis[i].rotX(Math.PI / 2.0); shaftRotors[i] = new RotationInterpolator(shaftAlphas[i], shafts[i], shaftAxis[i], 0.0f, shaftDirection[i] * (float) Math.PI * 2.0f); shaftRotors[i].setSchedulingBounds(bounds); shaftTGs[i].addChild(shaftRotors[i]); } // Define the gear base information. Again, these arrays exist to // make the process of changing the GearBox via an editor faster int gearCount = 5; float valleyToCircularPitchRatio = .15f; float pitchCircleRadius = 1.0f; float addendum = 0.05f; float dedendum = 0.05f; float gearThickness = 0.3f; float toothTipThickness = 0.27f; // Create an array of gears and their associated information SpurGear gears[] = new SpurGear[gearCount]; TransformGroup gearTGs[] = new TransformGroup[gearCount]; int gearShaft[] = new int[gearCount]; gearShaft[0] = 0; gearShaft[1] = 1; gearShaft[2] = 2; gearShaft[3] = 0; gearShaft[4] = 3; float ratio[] = new float[gearCount]; ratio[0] = 1.0f; ratio[1] = 0.5f; ratio[2] = 0.75f; ratio[3] = 0.25f; ratio[4] = 1.25f; Vector3d placement[] = new Vector3d[gearCount]; placement[0] = new Vector3d(0.0, 0.0, 0.0); placement[1] = new Vector3d(0.0, 0.0, 0.0); placement[2] = new Vector3d(0.0, 0.0, 0.0); placement[3] = new Vector3d(0.0, 0.0, -0.7); placement[4] = new Vector3d(0.0, 0.0, 0.0); // Create the gears. for (int i = 0; i < gearCount; i++) { gears[i] = new SpurGearThinBody(((int) ((float) toothCount * ratio[i])), pitchCircleRadius * ratio[i], shaftRadius[0], addendum, dedendum, gearThickness, toothTipThickness, valleyToCircularPitchRatio, look); } // Create a transform group node for arranging the gears on a shaft // and attach the gear to its associated shaft for (int i = 0; i < gearCount; i++) { gearTGs[i] = new TransformGroup(); gearTGs[i].getTransform(tempTransform); tempTransform .rotZ((shaftDirection[gearShaft[i]] == -1.0) ? gears[i].getCircularPitchAngle() / -2.0f : 0.0f); tempTransform.setTranslation(placement[i]); gearTGs[i].setTransform(tempTransform); gearTGs[i].addChild(gears[i]); shafts[gearShaft[i]].addChild(gearTGs[i]); } // Have Java 3D perform optimizations on this scene graph. branchRoot.compile(); return branchRoot; }
From source file:LightTest.java
public Group createGeometry() { m_TransformGroup = new TransformGroup(); m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); m_TransformGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); // create appearance and material for the Cone Appearance app = new Appearance(); // create the Primitive and add to the parent BranchGroup m_Cone = new Cone(1, 10, Primitive.ENABLE_APPEARANCE_MODIFY | Primitive.GENERATE_NORMALS, app); m_TransformGroup.addChild(m_Cone);//from w ww. j a v a 2s .co m Group superGroup = super.createGeometry(); superGroup.addChild(m_TransformGroup); return superGroup; }
From source file:Demo3D.java
/** * Create the subgraph #31 and prepare the TransformGroup node trGr31 for * the tetrahedron's picking.//from w w w . java2s . c o m * * @return javax.media.j3d.TransformGroup trGr31_2 - the root of the * subgraph #31 */ public TransformGroup mySubGraph31() { // Create a Transform3D node to execute the desired "static translation" // of the tetrahedron ===> start position. transl = new Transform3D(); vectransl = new Vector3d(0.0, -2.0, 0.0); // translation transl.set(vectransl); // Create the TransformGroup node trGr31, attach into it the "static // translation" instance and prepare it for the picking. trGr31 = new TransformGroup(transl); trGr31.setCapability(TransformGroup.ALLOW_TRANSFORM_READ); trGr31.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE); trGr31.setCapability(TransformGroup.ENABLE_PICK_REPORTING); // Attach myObject (Shape3D leaf) to the TransformGroup node trGr31. trGr31.addChild(myObject); // Return the final version of the TransformGroup node trGr31. return trGr31; }