Example usage for javax.media.j3d Transform3D set

List of usage examples for javax.media.j3d Transform3D set

Introduction

In this page you can find the example usage for javax.media.j3d Transform3D set.

Prototype

public final void set(Vector3f v1, float scale) 

Source Link

Document

Sets the value of this transform to a scale and translation matrix; the translation is scaled by the scale factor and all of the matrix values are modified.

Usage

From source file:PickWorld.java

private Group createObject(int i, int j, Appearance app, double scale, double xpos, double ypos) {

    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, new Vector3d(xpos, ypos, 0.0));
    TransformGroup objTrans = new TransformGroup(t);
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    objTrans.setCapability(TransformGroup.ENABLE_PICK_REPORTING);

    // Create a second transform group node and initialize it to the
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime.
    TransformGroup spinTg = new TransformGroup();
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    spinTg.setCapability(TransformGroup.ENABLE_PICK_REPORTING);
    Primitive obj = null;// w w  w  .  j a va 2  s  .co m

    if (i % 3 == 2) {
        obj = (Primitive) new Sphere(1.0f, Sphere.GENERATE_NORMALS | Sphere.GENERATE_TEXTURE_COORDS, j * 8 + 4,
                app);
    } else if (i % 3 == 1) {
        obj = (Primitive) new Cylinder(1.0f, 2.0f, Cylinder.GENERATE_TEXTURE_COORDS | Cylinder.GENERATE_NORMALS,
                j * 8 + 4, j * 8 + 4, app);
    } else if (i % 3 == 0) {
        obj = (Primitive) new Cone(1.0f, 2.0f, Cone.GENERATE_NORMALS | Cone.GENERATE_TEXTURE_COORDS, j * 8 + 4,
                j * 8 + 4, app);
    }

    // add it to the scene graph.
    spinTg.addChild(obj);
    objTrans.addChild(spinTg);

    return objTrans;
}

From source file:TickTockCollision.java

private Group createBox(double scale, Vector3d pos) {
    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, pos);
    TransformGroup objTrans = new TransformGroup(t);

    // Create a simple shape leaf node and add it to the scene graph
    Shape3D shape = new Box(0.5, 5.0, 1.0);
    objTrans.addChild(shape);/* w ww  .j  a  v  a 2  s .c  o  m*/

    // Create a new ColoringAttributes object for the shape's
    // appearance and make it writable at runtime.
    Appearance app = shape.getAppearance();
    ColoringAttributes ca = new ColoringAttributes();
    ca.setColor(0.6f, 0.3f, 0.0f);
    app.setCapability(app.ALLOW_COLORING_ATTRIBUTES_WRITE);
    app.setColoringAttributes(ca);

    // Create a new Behavior object that will perform the collision
    // detection on the specified object, and add it into
    // the scene graph.
    CollisionDetector cd = new CollisionDetector(shape);
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);
    cd.setSchedulingBounds(bounds);

    // Add the behavior to the scene graph
    objTrans.addChild(cd);

    return objTrans;
}

From source file:ConicWorld.java

private Group createObject(int i, int j, Appearance app, double scale, double xpos, double ypos) {

    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, new Vector3d(xpos, ypos, 0.0));
    TransformGroup objTrans = new TransformGroup(t);

    // Create a second transform group node and initialize it to the
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime.
    TransformGroup spinTg = new TransformGroup();
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    Primitive obj = null;/*w  ww.  j a  v a  2  s  . c o m*/

    if (i % 3 == 2) {
        obj = (Primitive) new Sphere(1.0f, Sphere.GENERATE_NORMALS | Sphere.GENERATE_TEXTURE_COORDS, j * 8 + 4,
                app);
    } else if (i % 3 == 1) {
        obj = (Primitive) new Cylinder(1.0f, 2.0f, Cylinder.GENERATE_TEXTURE_COORDS | Cylinder.GENERATE_NORMALS,
                j * 8 + 4, j * 8 + 4, app);
    } else if (i % 3 == 0) {
        obj = (Primitive) new Cone(1.0f, 2.0f, Cone.GENERATE_NORMALS | Cone.GENERATE_TEXTURE_COORDS, j * 8 + 4,
                j * 8 + 4, app);
    }

    // add it to the scene graph.
    spinTg.addChild(obj);

    // Create a new Behavior object that will perform the desired
    // operation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 5000, 0, 0, 0, 0, 0);

    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, spinTg, yAxis, 0.0f,
            (float) Math.PI * 2.0f);

    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    rotator.setSchedulingBounds(bounds);

    // Add the behavior and the transform group to the object
    objTrans.addChild(rotator);
    objTrans.addChild(spinTg);

    return objTrans;
}

From source file:TickTockCollision.java

public BranchGroup createSceneGraph() {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();

    // Create a Transformgroup to scale all objects so they
    // appear in the scene.
    TransformGroup objScale = new TransformGroup();
    Transform3D t3d = new Transform3D();
    t3d.setScale(0.4);//from  www .  j  a  v  a2  s  .  co  m
    objScale.setTransform(t3d);
    objRoot.addChild(objScale);

    // Create a bounds for the background and behaviors
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    // Set up the background
    Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f);
    Background bg = new Background(bgColor);
    bg.setApplicationBounds(bounds);
    objScale.addChild(bg);

    // Create a pair of transform group nodes and initialize them to
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behaviors can modify them at runtime. Add them to the
    // root of the subgraph.
    TransformGroup objTrans1 = new TransformGroup();
    objTrans1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objScale.addChild(objTrans1);

    TransformGroup objTrans2 = new TransformGroup();
    objTrans2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans1.addChild(objTrans2);

    // Create the positioning and scaling transform group node.
    Transform3D t = new Transform3D();
    t.set(0.3, new Vector3d(0.0, -1.5, 0.0));
    TransformGroup objTrans3 = new TransformGroup(t);
    objTrans2.addChild(objTrans3);

    // Create a simple shape leaf node, add it to the scene graph.
    objTrans3.addChild(new ColorCube());

    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis1 = new Transform3D();
    yAxis1.rotX(Math.PI / 2.0);
    Alpha tickTockAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE, 0, 0, 5000, 2500,
            200, 5000, 2500, 200);

    RotationInterpolator tickTock = new RotationInterpolator(tickTockAlpha, objTrans1, yAxis1,
            -(float) Math.PI / 2.0f, (float) Math.PI / 2.0f);
    tickTock.setSchedulingBounds(bounds);
    objTrans2.addChild(tickTock);

    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis2 = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 4000, 0, 0, 0, 0, 0);

    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, objTrans2, yAxis2, 0.0f,
            (float) Math.PI * 2.0f);
    rotator.setSchedulingBounds(bounds);
    objTrans2.addChild(rotator);

    // Now create a pair of rectangular boxes, each with a collision
    // detection behavior attached. The behavior will highlight the
    // object when it is in a state of collision.

    Group box1 = createBox(0.3, new Vector3d(-1.3, 0.0, 0.0));
    Group box2 = createBox(0.3, new Vector3d(1.3, 0.0, 0.0));

    objScale.addChild(box1);
    objScale.addChild(box2);

    // Have Java 3D perform optimizations on this scene graph.
    objRoot.compile();

    return objRoot;
}

From source file:SimpleCollision.java

/**
 * Creates the content branch of the scene graph.
 * /*from w w w  .  j av  a2  s .c o m*/
 * @return BranchGroup with content attached.
 */
protected BranchGroup buildContentBranch() {
    //First create a different appearance for each cube
    Appearance app1 = new Appearance();
    Appearance app2 = new Appearance();
    Appearance app3 = new Appearance();
    Color3f ambientColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f ambientColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f ambientColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f emissiveColour = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f specularColour = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f diffuseColour1 = new Color3f(1.0f, 0.0f, 0.0f);
    Color3f diffuseColour2 = new Color3f(1.0f, 1.0f, 0.0f);
    Color3f diffuseColour3 = new Color3f(1.0f, 1.0f, 1.0f);
    float shininess = 20.0f;
    app1.setMaterial(new Material(ambientColour1, emissiveColour, diffuseColour1, specularColour, shininess));
    app2.setMaterial(new Material(ambientColour2, emissiveColour, diffuseColour2, specularColour, shininess));
    app3.setMaterial(new Material(ambientColour3, emissiveColour, diffuseColour3, specularColour, shininess));

    //Create the vertex data for the cube. Since each shape is
    //a cube we can use the same vertex data for each cube
    IndexedQuadArray indexedCube = new IndexedQuadArray(8,
            IndexedQuadArray.COORDINATES | IndexedQuadArray.NORMALS, 24);
    Point3f[] cubeCoordinates = { new Point3f(1.0f, 1.0f, 1.0f), new Point3f(-1.0f, 1.0f, 1.0f),
            new Point3f(-1.0f, -1.0f, 1.0f), new Point3f(1.0f, -1.0f, 1.0f), new Point3f(1.0f, 1.0f, -1.0f),
            new Point3f(-1.0f, 1.0f, -1.0f), new Point3f(-1.0f, -1.0f, -1.0f),
            new Point3f(1.0f, -1.0f, -1.0f) };
    Vector3f[] cubeNormals = { new Vector3f(0.0f, 0.0f, 1.0f), new Vector3f(0.0f, 0.0f, -1.0f),
            new Vector3f(1.0f, 0.0f, 0.0f), new Vector3f(-1.0f, 0.0f, 0.0f), new Vector3f(0.0f, 1.0f, 0.0f),
            new Vector3f(0.0f, -1.0f, 0.0f) };
    int cubeCoordIndices[] = { 0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 6, 2, 1, 0, 4, 5, 1, 6, 7, 3, 2 };
    int cubeNormalIndices[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 };
    indexedCube.setCoordinates(0, cubeCoordinates);
    indexedCube.setNormals(0, cubeNormals);
    indexedCube.setCoordinateIndices(0, cubeCoordIndices);
    indexedCube.setNormalIndices(0, cubeNormalIndices);

    //Create the three cubes
    leftCube = new Shape3D(indexedCube, app1);
    rightCube = new Shape3D(indexedCube, app2);
    moveCube = new Shape3D(indexedCube, app3);

    //Define the user data so that we can print out the
    //name of the colliding cube.
    leftCube.setUserData(new String("left cube"));
    rightCube.setUserData(new String("right cube"));

    //Create the content branch and add the lights
    BranchGroup contentBranch = new BranchGroup();
    addLights(contentBranch);

    //Create and set up the movable cube's TransformGroup.
    //This scales and translates the cube and then sets the
    // read, write and pick reporting capabilities.
    Transform3D moveXfm = new Transform3D();
    moveXfm.set(0.7, new Vector3d(0.0, 2.0, 1.0));
    moveGroup = new TransformGroup(moveXfm);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    moveGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    moveGroup.setCapability(TransformGroup.ENABLE_PICK_REPORTING);

    //Create the left cube's TransformGroup
    Transform3D leftGroupXfm = new Transform3D();
    leftGroupXfm.set(new Vector3d(-1.5, 0.0, 0.0));
    leftGroup = new TransformGroup(leftGroupXfm);

    //Create the right cube's TransformGroup
    Transform3D rightGroupXfm = new Transform3D();
    rightGroupXfm.set(new Vector3d(1.5, 0.0, 0.0));
    rightGroup = new TransformGroup(rightGroupXfm);

    //Add the behaviour to allow us to move the cube
    PickTranslateBehavior pickTranslate = new PickTranslateBehavior(contentBranch, myCanvas3D, bounds);
    contentBranch.addChild(pickTranslate);

    //Add our CollisionDetector class to detect collisions with
    //the movable cube.
    CollisionDetector myColDet = new CollisionDetector(moveCube, bounds);
    contentBranch.addChild(myColDet);

    //Create the content branch hierarchy.
    contentBranch.addChild(moveGroup);
    contentBranch.addChild(leftGroup);
    contentBranch.addChild(rightGroup);
    moveGroup.addChild(moveCube);
    leftGroup.addChild(leftCube);
    rightGroup.addChild(rightCube);

    return contentBranch;

}

From source file:AppearanceTest.java

private Group createObject(Appearance app, double scale, double xpos, double ypos) {

    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, new Vector3d(xpos, ypos, 0.0));
    TransformGroup objTrans = new TransformGroup(t);

    // Create a second transform group node and initialize it to the
    // identity.  Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime.
    TransformGroup spinTg = new TransformGroup();
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

    // Create a simple shape leaf node and set the appearance
    Shape3D shape = new Tetrahedron();
    shape.setAppearance(app);/*from ww  w.  j a v a2s . co  m*/

    // add it to the scene graph.
    spinTg.addChild(shape);

    // Create a new Behavior object that will perform the desired
    // operation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 5000, 0, 0, 0, 0, 0);

    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, spinTg, yAxis, 0.0f,
            (float) Math.PI * 2.0f);

    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    rotator.setSchedulingBounds(bounds);

    // Add the behavior and the transform group to the object
    objTrans.addChild(rotator);
    objTrans.addChild(spinTg);

    return objTrans;
}

From source file:TickTockPicking.java

private Group createObject(Appearance app, double scale, double xpos, double ypos) {

    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, new Vector3d(xpos, ypos, 0.0));
    TransformGroup objTrans = new TransformGroup(t);

    // Create a second transform group node and initialize it to the
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime.
    TransformGroup spinTg = new TransformGroup();
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);

    // Create a simple shape leaf node and set the appearance
    Shape3D shape = new Tetrahedron();
    shape.setAppearance(app);//w  w w. ja  va  2 s  . co  m
    shape.setCapability(shape.ALLOW_APPEARANCE_READ);
    shape.setCapability(shape.ALLOW_APPEARANCE_WRITE);

    // add it to the scene graph.
    spinTg.addChild(shape);

    // Create a new Behavior object that will perform the desired
    // operation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 5000, 0, 0, 0, 0, 0);

    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, spinTg, yAxis, 0.0f,
            (float) Math.PI * 2.0f);

    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    rotator.setSchedulingBounds(bounds);

    // Add the behavior and the transform group to the object
    objTrans.addChild(rotator);
    objTrans.addChild(spinTg);

    return objTrans;
}

From source file:TickTockPicking.java

public BranchGroup createSceneGraph(Canvas3D c) {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();

    // Create a Transformgroup to scale all objects so they
    // appear in the scene.
    TransformGroup objScale = new TransformGroup();
    Transform3D t3d = new Transform3D();
    t3d.setScale(0.4);//from  w w w . j  a v a  2s  .c  o m
    objScale.setTransform(t3d);
    objRoot.addChild(objScale);

    // Create a bounds for the background and behaviors
    BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0), 100.0);

    // Set up the background
    Color3f bgColor = new Color3f(0.05f, 0.05f, 0.2f);
    Background bg = new Background(bgColor);
    bg.setApplicationBounds(bounds);
    objScale.addChild(bg);

    // Set up the global lights
    Color3f lColor1 = new Color3f(0.7f, 0.7f, 0.7f);
    Vector3f lDir1 = new Vector3f(-1.0f, -1.0f, -1.0f);
    Color3f alColor = new Color3f(0.2f, 0.2f, 0.2f);

    AmbientLight aLgt = new AmbientLight(alColor);
    aLgt.setInfluencingBounds(bounds);
    DirectionalLight lgt1 = new DirectionalLight(lColor1, lDir1);
    lgt1.setInfluencingBounds(bounds);
    objScale.addChild(aLgt);
    objScale.addChild(lgt1);

    // Create a pair of transform group nodes and initialize them to
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behaviors can modify them at runtime. Add them to the
    // root of the subgraph.
    TransformGroup objTrans1 = new TransformGroup();
    objTrans1.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objScale.addChild(objTrans1);

    TransformGroup objTrans2 = new TransformGroup();
    objTrans2.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans1.addChild(objTrans2);

    // Create the positioning and scaling transform group node.
    Transform3D t = new Transform3D();
    t.set(0.3, new Vector3d(0.0, -1.5, 0.0));
    TransformGroup objTrans3 = new TransformGroup(t);
    objTrans2.addChild(objTrans3);

    // Create a simple shape leaf node, set it's appearance, and
    // add it to the scene graph.
    Shape3D shape = new Cube();
    Appearance a = new Appearance();
    Color3f black = new Color3f(0.0f, 0.0f, 0.0f);
    Color3f white = new Color3f(1.0f, 1.0f, 1.0f);
    Color3f objColor = new Color3f(0.8f, 0.0f, 0.0f);
    a.setMaterial(new Material(objColor, black, objColor, white, 80.0f));
    shape.setAppearance(a);
    shape.setCapability(shape.ALLOW_APPEARANCE_READ);
    shape.setCapability(shape.ALLOW_APPEARANCE_WRITE);
    objTrans3.addChild(shape);

    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis1 = new Transform3D();
    yAxis1.rotX(Math.PI / 2.0);
    Alpha tickTockAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE, 0, 0, 5000, 2500,
            200, 5000, 2500, 200);

    RotationInterpolator tickTock = new RotationInterpolator(tickTockAlpha, objTrans1, yAxis1,
            -(float) Math.PI / 2.0f, (float) Math.PI / 2.0f);
    tickTock.setSchedulingBounds(bounds);
    objTrans2.addChild(tickTock);

    // Create a new Behavior object that will perform the desired
    // rotation on the specified transform object and add it into
    // the scene graph.
    Transform3D yAxis2 = new Transform3D();
    Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE, 0, 0, 4000, 0, 0, 0, 0, 0);

    RotationInterpolator rotator = new RotationInterpolator(rotationAlpha, objTrans2, yAxis2, 0.0f,
            (float) Math.PI * 2.0f);
    rotator.setSchedulingBounds(bounds);
    objTrans2.addChild(rotator);

    // Now create the simple picking behavior
    PickHighlightBehavior pickBeh = new PickHighlightBehavior(c, objRoot, bounds);

    // Create a bunch of objects with a behavior and add them
    // into the scene graph.

    int row, col;
    Appearance[][] app = new Appearance[3][3];

    for (row = 0; row < 3; row++)
        for (col = 0; col < 3; col++)
            app[row][col] = createAppearance(row * 3 + col);

    for (int i = 0; i < 3; i++) {
        double ypos = (double) (i - 1) * 1.5;
        for (int j = 0; j < 3; j++) {
            double xpos = (double) (j - 1) * 1.5;
            objScale.addChild(createObject(app[i][j], 0.3, xpos, ypos));
        }
    }

    // Have Java 3D perform optimizations on this scene graph.
    objRoot.compile();

    return objRoot;
}

From source file:ViewProj.java

public BranchGroup createVWorldViewSG() {
    // Create the root of the branch graph
    BranchGroup objRoot = new BranchGroup();
    objRoot.setCapability(BranchGroup.ALLOW_DETACH);

    // setup a transform group to hold the scaled scene
    TransformGroup objTrans = new TransformGroup();
    objRoot.addChild(objTrans);/*from   www .j a  va2 s .co  m*/

    // get the eye point, field of view and clip distances
    float fov = (float) view.getFieldOfView();

    // figure out the angle factors to find points along the edges
    // of the FOV
    // X = fovSpreadX * (Y - eyeVW.y) + eyeVW.x;
    float fovSpreadX = (float) Math.tan(fov / 2);
    // Z = fovSpreadZ * (X - eyeVW.x) + eyeVW.z;
    float fovSpreadZ = 1.0f / fovSpreadX;
    //System.out.println("fovSpreadX = " + fovSpreadX);
    //System.out.println("fovSpreadZ = " + fovSpreadZ);

    Transform3D vpTransform = new Transform3D();
    viewingPlatform.getViewPlatformTransform().getTransform(vpTransform);
    Vector3f vpTranslation = new Vector3f();
    vpTransform.get(vpTranslation);
    eyePtVW.set(vpTranslation);
    eyePtVW.negate();
    // get the eye point in our 2D coord system.
    Point3f eyePt = new Point3f(0.0f, eyePtVW.z, 0.1f);
    float frontClipDist = (float) view.getFrontClipDistance();
    float backClipDist = (float) view.getBackClipDistance();

    // set up the clip plane lines
    Point3f[] cpPoints = new Point3f[5];
    cpPoints[0] = new Point3f(frontClipDist * fovSpreadX, eyePtVW.z + frontClipDist, 0.1f);
    cpPoints[1] = new Point3f(cpPoints[0]);
    cpPoints[1].x *= -1;
    Point3f backLeft = new Point3f(-backClipDist * fovSpreadX, eyePtVW.z + backClipDist, 0.1f);
    cpPoints[2] = backLeft;
    Point3f backRight = new Point3f(backLeft);
    backRight.x *= -1;
    cpPoints[3] = backRight;
    cpPoints[4] = cpPoints[0];
    //for (int i = 0; i < 4; i++) {
    //    System.out.println("cpPoints[" + i + "] = " + cpPoints[i]);
    //}
    int[] cpLength = new int[1];
    cpLength[0] = 5;
    LineStripArray cpLines = new LineStripArray(5, LineArray.COORDINATES, cpLength);
    cpLines.setCoordinates(0, cpPoints);
    Appearance cpApp = new Appearance();
    ColoringAttributes cpCa = new ColoringAttributes(blue, ColoringAttributes.SHADE_FLAT);
    cpApp.setColoringAttributes(cpCa);
    Shape3D cpShape = new Shape3D(cpLines, cpApp);
    objTrans.addChild(cpShape);

    // get the limits of the space
    float minY = eyePt.y;
    float maxY = backLeft.y;
    float minX = backLeft.x;
    float maxX = backRight.x;

    // figure out the X and Y extents and offsets
    float deltaX = maxX - minX;
    float deltaY = maxY - minY;
    float offsetX = -(maxX + minX) / 2.0f;
    float offsetY = -(maxY + minY) / 2.0f;
    float gridSize = Math.max(deltaX, deltaY);

    // scale the grid slightly to give a border around the edge
    gridSize *= 1.1f;

    //System.out.println("offsetX = " + offsetX);
    //System.out.println("offsetY = " + offsetY);

    // Scale the view to fit -1 to 1
    Transform3D trans = new Transform3D();
    trans.set(new Vector3f(offsetX, offsetY, 0.0f), 2.0f / gridSize);
    objTrans.setTransform(trans);

    // figure out a grid step that is a multiple of 10 which keeps the
    // number of steps less than 30.
    float gridStep = 1.0f;
    while ((gridSize / gridStep) > 30.0) {
        gridStep *= 10;
    }
    int gridNumSteps = (int) Math.ceil(gridSize / gridStep) + 1;

    // allocate the grid points array, four points for each step (x and y)
    // with a couple extra points for the extra grid points added
    // below
    int gridNumPoints = 4 * (gridNumSteps + 4);
    Point3f[] gridPts = new Point3f[gridNumPoints];
    for (int i = 0; i < gridNumPoints; i++) {
        gridPts[i] = new Point3f();
    }

    // find the grid limits. Add a step on each side to make sure
    // the grid is larger than the view
    float gridMinY = gridStepFloor(minY, gridStep) - gridStep;
    float gridMaxY = gridStepCeil(maxY, gridStep) + gridStep;
    float gridMinX = gridStepFloor(minX, gridStep) - gridStep;
    float gridMaxX = gridStepCeil(maxX, gridStep) + gridStep;
    //System.out.println("gridMinY = " + gridMinY);
    //System.out.println("gridMaxY = " + gridMaxY);
    //System.out.println("gridMinX = " + gridMinX);
    //System.out.println("gridMaxX = " + gridMaxX);

    // set up the background grid
    Appearance bgApp = new Appearance();
    ColoringAttributes bgCa = new ColoringAttributes();
    bgCa.setColor(grey);
    LineAttributes bgLa = new LineAttributes();
    bgApp.setColoringAttributes(bgCa);

    // clear out the clip grid point list
    numClipGridPts = 0;

    // set up the vertical lines
    int numPts = 0;
    for (float x = gridMinX; x <= gridMaxX; x += gridStep) {
        gridPts[numPts].x = x;
        gridPts[numPts].y = gridMinY;
        gridPts[numPts].z = -0.2f;
        gridPts[numPts + 1].x = x;
        gridPts[numPts + 1].y = gridMaxY;
        gridPts[numPts + 1].z = -0.2f;
        numPts += 2;

        // try to add a line to the clipped grid
        // find the intersection of the clipped line with the FOV sides
        // this is a distance relative to the eye
        float clipZ = fovSpreadZ * Math.abs(x - eyePtVW.x);
        if (clipZ < frontClipDist) { // clip to front clip plane
            clipZ = frontClipDist;
        }
        if (clipZ < backClipDist) { // clip to back clip plane
            // line is not clipped
            clipGridPtsVW[numClipGridPts].x = x;
            clipGridPtsVW[numClipGridPts].y = clipZ + eyePtVW.z;
            clipGridPtsVW[numClipGridPts].z = -0.1f;
            clipGridPtsVW[numClipGridPts + 1].x = x;
            clipGridPtsVW[numClipGridPts + 1].y = backClipDist + eyePtVW.z;
            clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
            numClipGridPts += 2;
        }
    }
    LineArray vertLa = new LineArray(numPts, LineArray.COORDINATES);
    vertLa.setCoordinates(0, gridPts, 0, numPts);
    Shape3D vertShape = new Shape3D(vertLa, bgApp);
    objTrans.addChild(vertShape);

    // set up the horizontal lines
    numPts = 0;
    for (float y = gridMinY; y <= gridMaxY; y += gridStep) {
        gridPts[numPts].x = gridMinX;
        gridPts[numPts].y = y;
        gridPts[numPts++].z = -0.2f;
        gridPts[numPts].x = gridMaxX;
        gridPts[numPts].y = y;
        gridPts[numPts++].z = -0.2f;

        // try to add a line to the clipped grid
        // find the intersection of the clipped line with the FOV sides
        // this is a distance relative to the eye
        float clipDist = (y - eyePtVW.z);
        if ((clipDist > frontClipDist) && (clipDist < backClipDist)) {

            float clipX = fovSpreadX * clipDist;
            clipGridPtsVW[numClipGridPts].x = -clipX;
            clipGridPtsVW[numClipGridPts].y = y;
            clipGridPtsVW[numClipGridPts].z = -0.1f;
            clipGridPtsVW[numClipGridPts + 1].x = clipX;
            clipGridPtsVW[numClipGridPts + 1].y = y;
            clipGridPtsVW[numClipGridPts + 1].z = -0.1f;
            numClipGridPts += 2;
        }
    }
    LineArray horizLa = new LineArray(numPts, LineArray.COORDINATES);
    horizLa.setCoordinates(0, gridPts, 0, numPts);
    Shape3D horizShape = new Shape3D(horizLa, bgApp);
    objTrans.addChild(horizShape);

    // draw the clipped grid.
    if (numClipGridPts > 0) {
        LineArray clipLa = new LineArray(numClipGridPts, LineArray.COORDINATES);
        clipLa.setCoordinates(0, clipGridPtsVW, 0, numClipGridPts);
        Appearance clipGridApp = new Appearance();
        ColoringAttributes clipCa = new ColoringAttributes(black, ColoringAttributes.SHADE_FLAT);
        clipGridApp.setColoringAttributes(clipCa);
        LineAttributes clipGridLa = new LineAttributes();
        Shape3D clipShape = new Shape3D(clipLa, clipGridApp);
        objTrans.addChild(clipShape);
    }

    // set up the coordinate system
    Appearance coordSysApp = new Appearance();
    LineAttributes coordSysLa = new LineAttributes();
    coordSysLa.setLineWidth(3.0f);
    coordSysApp.setLineAttributes(coordSysLa);
    ColoringAttributes coordSysCa = new ColoringAttributes(grey, ColoringAttributes.SHADE_FLAT);
    coordSysApp.setColoringAttributes(coordSysCa);
    Point3f[] coordSysPts = new Point3f[4];
    coordSysPts[0] = new Point3f(gridMinX, 0, -0.5f);
    coordSysPts[1] = new Point3f(gridMaxX, 0, -0.5f);
    coordSysPts[2] = new Point3f(0, gridMinY, -0.5f);
    coordSysPts[3] = new Point3f(0, gridMaxY, -0.5f);
    LineArray coordSysLines = new LineArray(4, LineArray.COORDINATES);
    coordSysLines.setCoordinates(0, coordSysPts);
    Shape3D coordSysShape = new Shape3D(coordSysLines, coordSysApp);
    objTrans.addChild(coordSysShape);

    // set up the circle
    Appearance circleApp = new Appearance();
    ColoringAttributes circleCa = new ColoringAttributes();
    circleCa.setColor(red);
    circleApp.setColoringAttributes(circleCa);
    PolygonAttributes pa = new PolygonAttributes();
    pa.setCullFace(PolygonAttributes.CULL_NONE);
    circleApp.setPolygonAttributes(pa);
    int step = 360 / (numCirclePts - 1);
    for (int deg = 0; deg < 360; deg += step) {
        double angle = Math.toRadians(deg);
        circlePtsVW[deg / 10].x = sphereRadius * (float) Math.sin(angle);
        circlePtsVW[deg / 10].y = sphereRadius * (float) Math.cos(angle);
        circlePtsVW[deg / 10].z = -0.3f;
    }
    circlePtsVW[numCirclePts - 1].set(circlePtsVW[0]);
    int[] lineStripLength = new int[1];
    lineStripLength[0] = numCirclePts;
    //LineStripArray circleLineStrip = new LineStripArray(numCirclePts,
    //        LineArray.COORDINATES, lineStripLength);
    TriangleFanArray circleLineStrip = new TriangleFanArray(numCirclePts, LineArray.COORDINATES,
            lineStripLength);
    circleLineStrip.setCoordinates(0, circlePtsVW);
    Shape3D circleShape = new Shape3D(circleLineStrip, circleApp);
    objTrans.addChild(circleShape);

    return objRoot;
}

From source file:PickTest.java

private Group createObject(int index, double scale, double xpos, double ypos) {

    Shape3D shape = null;/*  w  w w  . ja  v a 2  s  .  co  m*/
    Geometry geom = null;

    // Create a transform group node to scale and position the object.
    Transform3D t = new Transform3D();
    t.set(scale, new Vector3d(xpos, ypos, 0.0));
    TransformGroup objTrans = new TransformGroup(t);
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    objTrans.setCapability(TransformGroup.ENABLE_PICK_REPORTING);

    // Create a second transform group node and initialize it to the
    // identity. Enable the TRANSFORM_WRITE capability so that
    // our behavior code can modify it at runtime.
    TransformGroup spinTg = new TransformGroup();
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
    spinTg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
    spinTg.setCapability(TransformGroup.ENABLE_PICK_REPORTING);

    Appearance appearance = new Appearance();

    switch (index) {
    case 0:
        geom = new GullCG();
        break;
    case 1:
        geom = new TetrahedronTA();
        break;
    case 2:
        geom = new OctahedronTFA();
        break;
    case 3:
        geom = new IcosahedronTSA();
        break;
    case 4:
        geom = new CubeIQA();
        break;
    case 5:
        geom = new TetrahedronITA();
        break;
    case 6:
        geom = new OctahedronITFA();
        break;
    case 7:
        geom = new IcosahedronITSA();
        break;
    case 8:
        geomMorph[0] = new ColorPyramidUp();
        geomMorph[1] = new ColorCube();
        geomMorph[2] = new ColorPyramidDown();
        break;
    case 9:
        geom = new TetrahedronLA();
        break;
    case 10:
        geom = new TetrahedronILA();
        break;
    case 11:
        geom = new TetrahedronLSA();
        break;
    case 12:
        geom = new TetrahedronILSA();
        break;
    case 13:
        geom = new TetrahedronPA();
        break;
    case 14:
        geom = new TetrahedronIPA();
        break;
    // TODO: other geo types, Text3D?
    case 15:
        geom = new TetrahedronTA();
        break;
    }

    Material m = new Material();

    if (index == 8) {
        m.setLightingEnable(false);
        appearance.setMaterial(m);
        morph = new Morph((GeometryArray[]) geomMorph, appearance);
        morph.setCapability(Morph.ALLOW_WEIGHTS_READ);
        morph.setCapability(Morph.ALLOW_WEIGHTS_WRITE);
        PickTool.setCapabilities(morph, PickTool.INTERSECT_FULL);
        spinTg.addChild(morph);
    } else {
        // Geometry picking require this to be set.
        if (index == 0)
            m.setLightingEnable(true);
        else
            m.setLightingEnable(false);
        appearance.setMaterial(m);

        if ((index == 13) || (index == 14)) {
            PointAttributes pa = new PointAttributes();
            pa.setPointSize(4.0f);
            appearance.setPointAttributes(pa);
        }

        shape = new Shape3D(geom, appearance);
        shape.setCapability(Shape3D.ALLOW_APPEARANCE_READ);
        shape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
        shape.setCapability(Shape3D.ENABLE_PICK_REPORTING);
        PickTool.setCapabilities(shape, PickTool.INTERSECT_FULL);
        spinTg.addChild(shape);
    }

    // add it to the scene graph.
    objTrans.addChild(spinTg);

    return objTrans;
}