List of usage examples for java.util.stream IntStream range
public static IntStream range(int startInclusive, int endExclusive)
From source file:org.apache.bookkeeper.common.conf.ConfigDef.java
private void writeNSharps(PrintStream stream, int num) { IntStream.range(0, num).forEach(ignored -> stream.print("#")); }
From source file:it.greenvulcano.gvesb.virtual.rest.RestCallOperation.java
private void fillMap(NodeList sourceNodeList, Map<String, String> destinationMap) { if (sourceNodeList.getLength() == 0) { destinationMap.clear();// www. j av a 2 s .c om } else { IntStream.range(0, sourceNodeList.getLength()).mapToObj(sourceNodeList::item).forEach(node -> { try { destinationMap.put(XMLConfig.get(node, "@name"), XMLConfig.get(node, "@value")); } catch (Exception e) { logger.error("Fail to read configuration", e); } }); } }
From source file:kishida.cnn.layers.FullyConnect.java
@Override public void prepareBatch() { float momentam = parent.getMomentam(); IntStream.range(0, weightDelta.length).forEach(i -> weightDelta[i] = weightDelta[i] * momentam); IntStream.range(0, biasDelta.length).parallel().forEach(i -> biasDelta[i] = biasDelta[i] * momentam); }
From source file:com.abixen.platform.service.businessintelligence.multivisualisation.application.service.JsonFilterService.java
private Map<String, String> getColumnTypeMapping(ResultSetMetaData rsmd) throws SQLException { int columnCount = rsmd.getColumnCount(); Map<String, String> columnTypeMapping = new HashMap<>(); IntStream.range(1, columnCount + 1).forEach(i -> { try {//from ww w .j a v a 2 s. co m String columnTypeName = rsmd.getColumnTypeName(i); if ("BIGINT".equalsIgnoreCase(columnTypeName)) { columnTypeName = "INTEGER"; } if ("VARCHAR".equalsIgnoreCase(columnTypeName)) { columnTypeName = "STRING"; } if ("FLOAT8".equalsIgnoreCase(columnTypeName)) { columnTypeName = "DOUBLE"; } if ("INT8".equalsIgnoreCase(columnTypeName)) { columnTypeName = "INTEGER"; } columnTypeMapping.put(rsmd.getColumnName(i).toUpperCase(), columnTypeName.toUpperCase()); } catch (SQLException e) { e.printStackTrace(); } }); return columnTypeMapping; }
From source file:Imputers.KnniLDProb.java
/** * Performs imputation using an already calculated similarity matrix. Used * for optimizing parameters as the similarity matrix only has to be calculated * once.// w w w . j a va 2s .co m * * The author is aware this description is a bit light on detail. Please * contact the author if further details are needed. * @param original Genotypes called based purely on read counts * @param callprobs Called genotype probabilities * @param list List of masked genotypes and their masked genotype * @param sim Similarity matrix * @return List of imputed probabilities */ protected List<SingleGenotypeProbability> impute(byte[][] original, List<SingleGenotypeProbability> callprobs, List<SingleGenotypeMasked> list, int[][] sim) { if (!SingleGenotypePosition.samePositions(callprobs, list)) { //Needs a proper error throw new ProgrammerException(); } Progress progress = ProgressFactory.get(list.size()); return IntStream.range(0, list.size()).mapToObj(i -> { SingleGenotypeMasked sgr = list.get(i); SingleGenotypeProbability sgc = callprobs.get(i); SingleGenotypeProbability sgp; if (Arrays.stream(sgr.getMasked()).sum() < knownDepth) { sgp = new SingleGenotypeProbability(sgr.getSample(), sgr.getSNP(), imputeSingle(original, sgr.getSample(), sgr.getSNP(), true, sim)); } else { sgp = new SingleGenotypeProbability(sgr.getSample(), sgr.getSNP(), sgc.getProb()); } progress.done(); return sgp; }).collect(Collectors.toCollection(ArrayList::new)); }
From source file:io.pravega.controller.store.stream.PersistentStreamBase.java
private CompletableFuture<Void> createNewSegmentTable(final StreamConfiguration configuration, long timestamp) { final int numSegments = configuration.getScalingPolicy().getMinNumSegments(); final double keyRangeChunk = 1.0 / numSegments; final int startingSegmentNumber = 0; final List<AbstractMap.SimpleEntry<Double, Double>> newRanges = IntStream.range(0, numSegments).boxed() .map(x -> new AbstractMap.SimpleEntry<>(x * keyRangeChunk, (x + 1) * keyRangeChunk)) .collect(Collectors.toList()); final byte[] segmentTable = TableHelper.updateSegmentTable(startingSegmentNumber, new byte[0], newRanges, timestamp);/*from w w w . j a va 2 s . c o m*/ return createSegmentTableIfAbsent(new Data<>(segmentTable, null)); }
From source file:com.simiacryptus.mindseye.lang.Tensor.java
/** * From json tensor.// www . j a v a 2s .co m * * @param json the json * @param resources the resources * @return the tensor */ @Nullable public static Tensor fromJson(@Nullable final JsonElement json, @Nullable Map<CharSequence, byte[]> resources) { if (null == json) return null; if (json.isJsonArray()) { final JsonArray array = json.getAsJsonArray(); final int size = array.size(); if (array.get(0).isJsonPrimitive()) { final double[] doubles = IntStream.range(0, size).mapToObj(i -> { return array.get(i); }).mapToDouble(element -> { return element.getAsDouble(); }).toArray(); @Nonnull Tensor tensor = new Tensor(doubles); assert tensor.isValid(); return tensor; } else { final List<Tensor> elements = IntStream.range(0, size).mapToObj(i -> { return array.get(i); }).map(element -> { return Tensor.fromJson(element, resources); }).collect(Collectors.toList()); @Nonnull final int[] dimensions = elements.get(0).getDimensions(); if (!elements.stream().allMatch(t -> Arrays.equals(dimensions, t.getDimensions()))) { throw new IllegalArgumentException(); } @Nonnull final int[] newDdimensions = Arrays.copyOf(dimensions, dimensions.length + 1); newDdimensions[dimensions.length] = size; @Nonnull final Tensor tensor = new Tensor(newDdimensions); @Nullable final double[] data = tensor.getData(); for (int i = 0; i < size; i++) { @Nullable final double[] e = elements.get(i).getData(); System.arraycopy(e, 0, data, i * e.length, e.length); } for (@Nonnull Tensor t : elements) { t.freeRef(); } assert tensor.isValid(); return tensor; } } else if (json.isJsonObject()) { JsonObject jsonObject = json.getAsJsonObject(); @Nonnull int[] dims = fromJsonArray(jsonObject.getAsJsonArray("length")); @Nonnull Tensor tensor = new Tensor(dims); SerialPrecision precision = SerialPrecision .valueOf(jsonObject.getAsJsonPrimitive("precision").getAsString()); JsonElement base64 = jsonObject.get("base64"); if (null == base64) { if (null == resources) throw new IllegalArgumentException("No Data Resources"); CharSequence resourceId = jsonObject.getAsJsonPrimitive("resource").getAsString(); tensor.setBytes(resources.get(resourceId), precision); } else { tensor.setBytes(Base64.getDecoder().decode(base64.getAsString()), precision); } assert tensor.isValid(); JsonElement id = jsonObject.get("id"); if (null != id) { tensor.setId(UUID.fromString(id.getAsString())); } return tensor; } else { @Nonnull Tensor tensor = new Tensor(json.getAsJsonPrimitive().getAsDouble()); assert tensor.isValid(); return tensor; } }
From source file:com.github.lukaszbudnik.dqueue.QueueClientPerformanceTest.java
@Test public void doIt5Filters() throws ExecutionException, InterruptedException { byte[] data = new byte[2045]; Random r = new Random(); r.nextBytes(data);/*from w ww . j ava 2 s. co m*/ ByteBuffer buffer = ByteBuffer.wrap(data); Map<String, String> filters = ImmutableMap.of( // f1 "f1", Long.toHexString(r.nextLong()), // f2 "f2", Long.toHexString(r.nextLong()), // f3 "f3", Long.toHexString(r.nextLong()), // f4 "f4", Long.toHexString(r.nextLong()), // f5 "f5", Long.toHexString(r.nextLong())); IntStream.range(0, NUMBER_OF_ITERATIONS).forEach((i) -> { UUID startTime = UUIDs.timeBased(); Future<UUID> id = queueClient.publish(new Item(startTime, buffer, filters)); try { Assert.assertEquals(startTime, id.get()); } catch (Exception e) { fail(e.getMessage()); } }); IntStream.range(0, NUMBER_OF_ITERATIONS).forEach((i) -> { Future<Optional<Item>> itemFuture = queueClient.consume(filters); Optional<Item> item = null; try { item = itemFuture.get(); } catch (Exception e) { fail(e.getMessage()); } assertTrue(item.isPresent()); }); }
From source file:net.demilich.metastone.bahaviour.ModifiedMCTS.MCTSCritique.java
@Override public synchronized GameCritique trainBasedOnActor(Behaviour a, GameContext startingTurn, Player p) { f = new FeatureCollector(startingTurn, p); if (caffe_net != null) { return this; }// ww w .j a v a 2 s .c o m Random generator = new Random(); f = new FeatureCollector(startingTurn, p); f.printFeatures(startingTurn, p); playerID = p.getId(); startingTurn = startingTurn.clone(); startingTurn.getPlayer1().setBehaviour(a.clone()); startingTurn.getPlayer2().setBehaviour(a.clone()); ArrayList<double[]> gameFeatures = new ArrayList<>(); ArrayList<Double> gameLabels = new ArrayList<>(); ArrayList<Double> gameWeights = new ArrayList<>(); ArrayList<double[]> gameFeaturesTesting = new ArrayList<>(); ArrayList<Double> gameLabelsTesting = new ArrayList<>(); ArrayList<Double> gameWeightsTesting = new ArrayList<>(); ArrayList<GameContext> testingSetContexts = new ArrayList<>(); ArrayList<Double> testingSetReTests = new ArrayList<>(); // //System.err.println("on sample " + i); //GameContext simulation = startingTurn.clone(); final GameContext simulation = startingTurn.clone(); behaviours = new ExperimentalMCTS[samples * 2]; IntStream.range(0, samples).parallel().forEach((int i) -> { doPlay(RandomizeSimulation(simulation.clone()), i, f.clone()); }); System.err.println("game playing is done!"); //System.exit(0); for (int i = 0; i < samples; i++) { boolean testing = !(i < samples - samples / 10); if (!testing) { gatherSamplesFrom(behaviours[i * 2], gameFeatures, gameLabels, gameWeights, null, 1); gatherSamplesFrom(behaviours[i * 2 + 1], gameFeatures, gameLabels, gameWeights, null, 0); } else { gatherSamplesFrom(behaviours[i * 2], gameFeaturesTesting, gameLabelsTesting, gameWeightsTesting, testingSetReTests, 1); gatherSamplesFrom(behaviours[i * 2 + 1], gameFeaturesTesting, gameLabelsTesting, gameWeightsTesting, testingSetReTests, 0); } } System.err.println("total weight: " + getSum(gameWeights)); System.err.println("total ones: " + getNumOnes(gameWeights)); double[][] trainingFeatures = new double[gameFeatures.size()][gameFeatures.get(0).length]; double[][] trainingLabels = new double[gameLabels.size()][1]; double[][] trainingWeights = new double[gameLabels.size()][1]; for (int i = 0; i < trainingFeatures.length; i++) { trainingFeatures[i] = gameFeatures.get(i); double[] arr1 = new double[1]; arr1[0] = gameLabels.get(i); trainingLabels[i] = arr1; arr1 = new double[1]; arr1[0] = gameWeights.get(i); trainingWeights[i] = arr1; } sendCaffeData(trainingFeatures, trainingLabels, trainingWeights, "HearthstoneTrainingALLSTUFF.h5", false, false);//(int) (gameFeatures.size() * 1.6),true); // train.iteration(1000); double[][] testingFeatures = new double[gameFeaturesTesting.size()][gameFeaturesTesting.get(0).length]; double[][] testingLabels = new double[gameLabelsTesting.size()][1]; double[][] testingWeights = new double[gameLabelsTesting.size()][1]; for (int i = 0; i < testingFeatures.length; i++) { testingFeatures[i] = gameFeaturesTesting.get(i); double[] arr1 = new double[1]; arr1[0] = gameLabelsTesting.get(i); testingLabels[i] = arr1; arr1 = new double[1]; arr1[0] = gameWeightsTesting.get(i); testingWeights[i] = arr1; } sendCaffeData(testingFeatures, testingLabels, testingWeights, "HearthstoneTestingALLSTUFF.h5", true, false); System.err.println("testing err if just 0's" + this.getErrorIfZero(testingLabels)); System.err.println("ideal testing err: " + this.getIdealTestingError(testingLabels, testingSetContexts, testingSetReTests)); return this; }
From source file:com.twosigma.beakerx.kernel.magic.command.functionality.TimeMagicCommand.java
protected MagicCommandOutput timeIt(TimeItOption timeItOption, String codeToExecute, Message message, int executionCount, boolean showResult) { String output = "%s %s per loop (mean std. dev. of %d run, %d loop each)"; if (timeItOption.getNumber() < 0) { return new MagicCommandOutput(MagicCommandOutput.Status.ERROR, "Number of execution must be bigger then 0"); }/*from ww w.ja v a2 s. c o m*/ int number = timeItOption.getNumber() == 0 ? getBestNumber(codeToExecute, showResult, message) : timeItOption.getNumber(); if (timeItOption.getRepeat() == 0) { return new MagicCommandOutput(MagicCommandOutput.Status.ERROR, "Repeat value must be bigger then 0"); } SimpleEvaluationObject seo = createSimpleEvaluationObject(codeToExecute, kernel, message, executionCount); seo.noResult(); TryResult either = kernel.executeCode(codeToExecute, seo); try { if (either.isError()) { return new MagicCommandOutput(MagicCommandOutput.Status.ERROR, "Please correct your statement"); } List<Long> allRuns = new ArrayList<>(); List<Long> timings = new ArrayList<>(); CompletableFuture<Boolean> isReady = new CompletableFuture<>(); IntStream.range(0, timeItOption.getRepeat()).forEach(repeatIter -> { IntStream.range(0, number).forEach(numberIter -> { SimpleEvaluationObject seo2 = createSimpleEvaluationObject(codeToExecute, kernel, message, executionCount); seo2.noResult(); Long startOfEvaluationInNanoseconds = System.nanoTime(); TryResult result = kernel.executeCode(codeToExecute, seo2); Long endOfEvaluationInNanoseconds = System.nanoTime(); allRuns.add(endOfEvaluationInNanoseconds - startOfEvaluationInNanoseconds); if (repeatIter == timeItOption.getRepeat() - 1 && numberIter == number - 1) { isReady.complete(true); } }); }); if (isReady.get()) { allRuns.forEach(run -> timings.add(run / number)); //calculating average long average = timings.stream().reduce((aLong, aLong2) -> aLong + aLong2).orElse(0L) / timings.size(); double stdev = Math.pow( timings.stream().map(currentValue -> Math.pow(currentValue - average, 2)) .reduce((aDouble, aDouble2) -> aDouble + aDouble2).orElse(0.0) / timings.size(), 0.5); if (timeItOption.getQuietMode()) { output = ""; } else { output = String.format(output, format(average), format((long) stdev), timeItOption.getRepeat(), number); } return new MagicCommandOutput(MagicCommandOutput.Status.OK, output); } } catch (InterruptedException | ExecutionException e) { return new MagicCommandOutput(MagicCommandOutput.Status.ERROR, "There occurs problem with " + e.getMessage()); } return new MagicCommandOutput(MagicCommandOutput.Status.ERROR, "There occurs problem with timeIt operations"); }