List of usage examples for java.lang Math sqrt
@HotSpotIntrinsicCandidate public static double sqrt(double a)
From source file:com.anhth12.util.WeightInitUtil.java
public static INDArray uniformBasedOnInAndOut(int[] shape, int nIn, int nOut) { double min = -4.0 * Math.sqrt(6.0 / (double) (nOut + nIn)); double max = 4.0 * Math.sqrt(6.0 / (double) (nOut + nIn)); return Nd4j.rand(shape, Distributions.uniform(new MersenneTwister(123), min, max)); }
From source file:com.opengamma.analytics.math.function.special.OrthonormalHermitePolynomialFunctionTest.java
@Test public void test() { final int n = 15; final DoubleFunction1D[] f1 = HERMITE.getPolynomials(n); final DoubleFunction1D[] f2 = ORTHONORMAL.getPolynomials(n); final double x = 3.4; for (int i = 0; i < f1.length; i++) { assertEquals(/*w ww.jav a 2 s. c o m*/ f1[i].evaluate(x) / Math.sqrt(MathUtils.factorialDouble(i) * Math.pow(2, i) * Math.sqrt(Math.PI)), f2[i].evaluate(x), EPS); } }
From source file:com.opengamma.strata.math.impl.function.special.OrthonormalHermitePolynomialFunctionTest.java
@Test public void test() { final int n = 15; final DoubleFunction1D[] f1 = HERMITE.getPolynomials(n); final DoubleFunction1D[] f2 = ORTHONORMAL.getPolynomials(n); final double x = 3.4; for (int i = 0; i < f1.length; i++) { assertEquals(/*from w w w .j a v a 2 s . c o m*/ f1[i].applyAsDouble(x) / Math .sqrt(CombinatoricsUtils.factorialDouble(i) * Math.pow(2, i) * Math.sqrt(Math.PI)), f2[i].applyAsDouble(x), EPS); } }
From source file:com.cloudera.oryx.common.math.VectorMath.java
/** * @param x vector for whom norm to be calculated * @return the L2 norm of vector x/* w w w. j a v a2s . c o m*/ * @throws IllegalArgumentException if x is of 0 length */ public static double norm(float[] x) { double total = 0.0; for (float f : x) { total += (double) f * (double) f; } return Math.sqrt(total); }
From source file:com.opengamma.strata.math.impl.regression.WeightedLeastSquaresRegressionTest.java
@Test public void test() { final double a0 = 2.3; final double a1 = -4.5; final double a2 = 0.76; final double a3 = 3.4; final int n = 30; final double[][] x = new double[n][3]; final double[] yIntercept = new double[n]; final double[] yNoIntercept = new double[n]; final double[][] w1 = new double[n][n]; final double[] w2 = new double[n]; double y, x1, x2, x3; for (int i = 0; i < n; i++) { x1 = i;//from w w w . j av a 2s .c o m x2 = x1 * x1; x3 = Math.sqrt(x1); x[i] = new double[] { x1, x2, x3 }; y = x1 * a1 + x2 * a2 + x3 * a3; yNoIntercept[i] = y; yIntercept[i] = y + a0; for (int j = 0; j < n; j++) { w1[i][j] = RANDOM.nextDouble(); } w1[i][i] = 1.; w2[i] = 1.; } final WeightedLeastSquaresRegression wlsRegression = new WeightedLeastSquaresRegression(); final OrdinaryLeastSquaresRegression olsRegression = new OrdinaryLeastSquaresRegression(); try { wlsRegression.regress(x, (double[]) null, yNoIntercept, false); Assert.fail(); } catch (final IllegalArgumentException e) { // Expected } LeastSquaresRegressionResult wls = wlsRegression.regress(x, w1, yIntercept, true); LeastSquaresRegressionResult ols = olsRegression.regress(x, yIntercept, true); assertRegressions(n, 4, wls, ols); wls = wlsRegression.regress(x, w1, yNoIntercept, false); ols = olsRegression.regress(x, yNoIntercept, false); assertRegressions(n, 3, wls, ols); wls = wlsRegression.regress(x, w2, yIntercept, true); ols = olsRegression.regress(x, yIntercept, true); assertRegressions(n, 4, wls, ols); wls = wlsRegression.regress(x, w2, yNoIntercept, false); ols = olsRegression.regress(x, yNoIntercept, false); assertRegressions(n, 3, wls, ols); }
From source file:main.Draft_text_categorization.java
/** * /* www.j a v a 2 s. co m*/ * http://stackoverflow.com/questions/3622112/vector-space-model-algorithm-in-java-to-get-the-similarity-score-between-two-peo * * @param v1 * @param v2 * @return */ static double cosine_similarity(Map<String, Integer> v1, Map<String, Integer> v2) { Set<String> both = new HashSet<String>(v1.keySet()); both.retainAll(v2.keySet()); double sclar = 0, norm1 = 0, norm2 = 0; for (String k : both) sclar += v1.get(k) * v2.get(k); for (String k : v1.keySet()) norm1 += v1.get(k) * v1.get(k); for (String k : v2.keySet()) norm2 += v2.get(k) * v2.get(k); return sclar / Math.sqrt(norm1 * norm2); }
From source file:conceptor.chaos.Lyapunov.java
private static double[] getTestPoint(DynamicalSystem system, double d0) { double[] testPoint = new double[system.getDimension()]; double denom = Math.sqrt((new Integer(system.getDimension())).doubleValue()); double[] x = system.getState(); for (int i = 0; i < x.length; i++) { testPoint[i] = x[i] + d0 / denom; }/* w ww . j av a 2s .c o m*/ return testPoint; }
From source file:com.opengamma.analytics.financial.var.EmpiricalDistributionVaRParameters.java
public EmpiricalDistributionVaRParameters(final double horizon, final double periods, final double quantile) { Validate.isTrue(horizon > 0, "horizon"); Validate.isTrue(periods > 0, "periods"); if (!ArgumentChecker.isInRangeInclusive(0, 1, quantile)) { throw new IllegalArgumentException("Quantile must be between 0 and 1"); }/*from ww w .j a v a2s .co m*/ _percentileCalculator = new PercentileCalculator(1 - quantile); _horizon = horizon; _periods = periods; _quantile = quantile; _mult = Math.sqrt(horizon / periods); }
From source file:com.javachen.grab.common.math.VectorMath.java
/** * @param x vector for whom norm to be calculated * @return the L2 norm of vector x//ww w . j a v a2 s . co m * @throws IllegalArgumentException if x is of 0 length */ public static double norm(float[] x) { double total = 0.0; for (float f : x) { double d = (double) f; total += d * d; } return Math.sqrt(total); }
From source file:net.adamjak.thomas.graph.application.commons.StatisticsUtils.java
public static DescriptiveStatistics statisticsWithoutExtremes(DescriptiveStatistics inputStatistics, GrubbsLevel grubbsLevel) throws IllegalArgumentException { if (inputStatistics == null || grubbsLevel == null) throw new IllegalArgumentException("Params inputStatistics and grubbsLevel can not be null."); int countInput = inputStatistics.getValues().length; Double avgInput = inputStatistics.getMean(); Double stdInput = inputStatistics.getStandardDeviation(); Double s = stdInput * Math.sqrt((countInput - 1.0) / countInput); Double criticalValue = grubbsLevel.getCriticalValue(countInput); DescriptiveStatistics outputStatistic = new DescriptiveStatistics(); for (double inpVal : inputStatistics.getValues()) { double test = Math.abs(inpVal - avgInput) / s; if (test <= criticalValue) { outputStatistic.addValue(inpVal); }/* www .j a v a 2 s . c o m*/ } return outputStatistic; }