Example usage for java.lang Math sqrt

List of usage examples for java.lang Math sqrt

Introduction

In this page you can find the example usage for java.lang Math sqrt.

Prototype

@HotSpotIntrinsicCandidate
public static double sqrt(double a) 

Source Link

Document

Returns the correctly rounded positive square root of a double value.

Usage

From source file:InfNaN.java

public static void main(String[] argv) {
    double d = 123;
    double e = 0;
    if (d / e == Double.POSITIVE_INFINITY)
        System.out.println("Check for POSITIVE_INFINITY works");
    double s = Math.sqrt(-1);
    if (s == Double.NaN)
        System.out.println("Comparison with NaN incorrectly returns true");
    if (Double.isNaN(s))
        System.out.println("Double.isNaN() correctly returns true");
}

From source file:Heron.java

public static void main(String[] args) {
    // Sides for triangle in float
    float af, bf, cf;
    float sf, areaf;

    // Ditto in double
    double ad, bd, cd;
    double sd, aread;

    // Area of triangle in float
    af = 12345679.0f;/* ww w  .  j a  v a2  s .  co m*/
    bf = 12345678.0f;
    cf = 1.01233995f;

    sf = (af + bf + cf) / 2.0f;
    areaf = (float) Math.sqrt(sf * (sf - af) * (sf - bf) * (sf - cf));
    System.out.println("Single precision: " + areaf);

    // Area of triangle in double
    ad = 12345679.0;
    bd = 12345678.0;
    cd = 1.01233995;

    sd = (ad + bd + cd) / 2.0d;
    aread = Math.sqrt(sd * (sd - ad) * (sd - bd) * (sd - cd));
    System.out.println("Double precision: " + aread);
}

From source file:QuadSolv.java

public static void main(String[] args) {

    double a, b, c, discr, root1, root2;

    // Apllying the quadratic formula
    // Obtain sides from user
    System.out.println("Applying the quadratic formula");
    a = 1d;//w w  w. ja  va2 s.c  o  m
    b = 2d;
    c = 3d;

    // Solve the discriminant (SQRT (b^2 - 4ac)
    discr = Math.sqrt((b * b) - (4 * a * c));
    System.out.println("Discriminant = " + discr);
    // Determine number of roots
    // if discr > 0 equation has 2 real roots
    // if discr == 0 equation has a repeated real root
    // if discr < 0 equation has imaginary roots
    // if discr is NaN equation has no roots

    // Test for NaN
    if (Double.isNaN(discr))
        System.out.println("Equation has no roots");

    if (discr > 0) {
        System.out.println("Equation has 2 roots");
        root1 = (-b + discr) / 2 * a;
        root2 = (-b - discr) / 2 * a;
        System.out.println("First root = " + root1);
        System.out.println("Second roor = " + root2);
    }

    if (discr == 0) {
        System.out.println("Equation has 1 root");
        root1 = (-b + discr) / 2 * a;
        System.out.println("Root = " + root1);
    }

    if (discr < 0)
        System.out.println("Equation has imaginary roots");

}

From source file:HypFun.java

public static void main(String[] args) {
    double rads, degs, sinHA, cosHA, tanHA, asinHA;

    // Obtain angle in degrees from user
    degs = 20d;//from   ww  w.j a  v  a2  s.c om
    // Convert degrees to radian
    rads = Math.toRadians(degs);

    // Calculate hyperbolic sine
    sinHA = (Math.exp(rads) - Math.exp(-rads)) / 2;
    System.out.println("Hyperbolic sine = " + sinHA);

    // Calculate Hyperbolic cosine
    cosHA = (Math.exp(rads) + Math.exp(-rads)) / 2;
    System.out.println("Hyperbolic cosine = " + cosHA);

    // Calculate hyperbolic tangent
    tanHA = sinHA / cosHA;
    System.out.println("Hyperbolic tangent = " + tanHA);

    // Calculate hyperbolic arc-sine
    asinHA = Math.log(sinHA + Math.sqrt((sinHA * sinHA) + 1.0));
    degs = Math.toDegrees(asinHA);
    System.out.println("Arc hyperbolic sine = " + degs);
}

From source file:Main.java

public static void main(String[] args) {
    int a = 10;// w  w  w .jav a 2s .co  m
    int b = -50;
    int c = 3;
    double x = 25.0;
    double y = 3.0;
    double z = 4.0;

    System.out.println("abs(b)     = " + Math.abs(b));
    System.out.println("cbrt(x)   = " + Math.cbrt(x));
    System.out.println("exp(y)     = " + Math.exp(z));
    System.out.println("hypot(y, z)= " + Math.hypot(y, z));

    System.out.println("log(y)    = " + Math.log(y));
    System.out.println("log10(y)  = " + Math.log10(y));
    System.out.println("max(a, b) = " + Math.max(a, b));
    System.out.println("min(a, b) = " + Math.min(a, b));
    System.out.println("pow(a, c) = " + Math.pow(a, c));
    System.out.println("random()  = " + Math.random());
    System.out.println("signum(b) = " + Math.signum(b));
    System.out.println("sqrt(x)   = " + Math.sqrt(y));
}

From source file:FpError.java

public static void main(String[] args) {
    double res;/*w  ww  .jav  a 2s  .  c  o  m*/
    double divisor = 0;
    double dividend, root;

    // Get user input for numerator
    System.out.println("Forcing division by zero error");
    dividend = 10d;
    res = dividend / divisor;
    // Test for negative invifinity
    if (res == Double.NEGATIVE_INFINITY)
        System.out.println("result is NEGATIVE_INFINITY");
    if (res == Double.POSITIVE_INFINITY)
        System.out.println("result is POSITIVE_INFINITY");
    // Test for either infinity
    if (Double.isInfinite(res))
        System.out.println("result is infinite");

    // Get user input for square root
    System.out.println("\nCalculating square root (try negative)");
    root = 10d;
    res = Math.sqrt(root);
    if (Double.isNaN(res))
        System.out.println("result is Nan");
    else
        System.out.println("Square root = " + res);
}

From source file:MainClass.java

public static void main(String args[]) {
    System.out.printf("Math.abs( 23.7 ) = %f\n", Math.abs(23.7));
    System.out.printf("Math.abs( 0.0 ) = %f\n", Math.abs(0.0));
    System.out.printf("Math.abs( -23.7 ) = %f\n", Math.abs(-23.7));
    System.out.printf("Math.ceil( 9.2 ) = %f\n", Math.ceil(9.2));
    System.out.printf("Math.ceil( -9.8 ) = %f\n", Math.ceil(-9.8));
    System.out.printf("Math.cos( 0.0 ) = %f\n", Math.cos(0.0));
    System.out.printf("Math.exp( 1.0 ) = %f\n", Math.exp(1.0));
    System.out.printf("Math.exp( 2.0 ) = %f\n", Math.exp(2.0));
    System.out.printf("Math.floor( 9.2 ) = %f\n", Math.floor(9.2));
    System.out.printf("Math.floor( -9.8 ) = %f\n", Math.floor(-9.8));
    System.out.printf("Math.log( Math.E ) = %f\n", Math.log(Math.E));
    System.out.printf("Math.log( Math.E * Math.E ) = %f\n", Math.log(Math.E * Math.E));
    System.out.printf("Math.max( 2.3, 12.7 ) = %f\n", Math.max(2.3, 12.7));
    System.out.printf("Math.max( -2.3, -12.7 ) = %f\n", Math.max(-2.3, -12.7));
    System.out.printf("Math.min( 2.3, 12.7 ) = %f\n", Math.min(2.3, 12.7));
    System.out.printf("Math.min( -2.3, -12.7 ) = %f\n", Math.min(-2.3, -12.7));
    System.out.printf("Math.pow( 2.0, 7.0 ) = %f\n", Math.pow(2.0, 7.0));
    System.out.printf("Math.pow( 9.0, 0.5 ) = %f\n", Math.pow(9.0, 0.5));
    System.out.printf("Math.sin( 0.0 ) = %f\n", Math.sin(0.0));
    System.out.printf("Math.sqrt( 900.0 ) = %f\n", Math.sqrt(900.0));
    System.out.printf("Math.sqrt( 9.0 ) = %f\n", Math.sqrt(9.0));
    System.out.printf("Math.tan( 0.0 ) = %f\n", Math.tan(0.0));
}

From source file:Sieve.java

public static void main(String[] args) {
    // We will compute all primes less than the value specified on the
    // command line, or, if no argument, all primes less than 100.
    int max = 100; // Assign a default value
    try {//from w ww.  j av  a  2s .  co m
        max = Integer.parseInt(args[0]);
    } // Parse user-supplied arg
    catch (Exception e) {
    } // Silently ignore exceptions.

    // Create an array that specifies whether each number is prime or not.
    boolean[] isprime = new boolean[max + 1];

    // Assume that all numbers are primes, until proven otherwise.
    for (int i = 0; i <= max; i++)
        isprime[i] = true;

    // However, we know that 0 and 1 are not primes. Make a note of it.
    isprime[0] = isprime[1] = false;

    // To compute all primes less than max, we need to rule out
    // multiples of all integers less than the square root of max.
    int n = (int) Math.ceil(Math.sqrt(max)); // See java.lang.Math class

    // Now, for each integer i from 0 to n:
    //   If i is a prime, then none of its multiples are primes,
    //   so indicate this in the array. If i is not a prime, then
    //   its multiples have already been ruled out by one of the
    //   prime factors of i, so we can skip this case.
    for (int i = 0; i <= n; i++) {
        if (isprime[i]) // If i is a prime,
            for (int j = 2 * i; j <= max; j = j + i)
                // loop through multiples
                isprime[j] = false; // they are not prime.
    }

    // Now go look for the largest prime:
    int largest;
    for (largest = max; !isprime[largest]; largest--)
        ; // empty loop body

    // Output the result
    System.out.println("The largest prime less than or equal to " + max + " is " + largest);
}

From source file:ExponentialDemo.java

public static void main(String[] args) {
    double x = 11.635;
    double y = 2.76;

    System.out.printf("The value of e is %.4f%n", Math.E);
    System.out.printf("exp(%.3f) is %.3f%n", x, Math.exp(x));
    System.out.printf("log(%.3f) is %.3f%n", x, Math.log(x));
    System.out.printf("pow(%.3f, %.3f) is %.3f%n", x, y, Math.pow(x, y));
    System.out.printf("sqrt(%.3f) is %.3f%n", x, Math.sqrt(x));
}

From source file:ExponentialDemo.java

public static void main(String[] args) {
    double x = 11.635;
    double y = 2.76;

    System.out.println("The value of e is " + Math.E);
    System.out.println("exp(" + x + ") is " + Math.exp(x));
    System.out.println("log(" + x + ") is " + Math.log(x));
    System.out.println("pow(" + x + ", " + y + ") is " + Math.pow(x, y));
    System.out.println("sqrt(" + x + ") is " + Math.sqrt(x));
}