Java tutorial
/* * Copyright (c) 2014, Cloudera, Inc. All Rights Reserved. * * Cloudera, Inc. licenses this file to you under the Apache License, * Version 2.0 (the "License"). You may not use this file except in * compliance with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * This software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License for * the specific language governing permissions and limitations under the * License. */ package com.cloudera.oryx.common.math; import java.util.Collection; import org.apache.commons.math3.linear.Array2DRowRealMatrix; import org.apache.commons.math3.linear.RealMatrix; /** * Utility class with simple vector-related operations. */ public final class VectorMath { private VectorMath() { } /** * @return dot product of the two given arrays * @param x one array * @param y the other array * @throws IllegalArgumentException if x and y are empty or of different length */ public static double dot(float[] x, float[] y) { int length = x.length; double dot = 0.0; for (int i = 0; i < length; i++) { dot += (double) x[i] * (double) y[i]; } return dot; } /** * @return dot product of the two given arrays * @param x one array * @param y the other array * @throws IllegalArgumentException if x and y are empty or of different length */ public static double dot(double[] x, float[] y) { int length = x.length; double dot = 0.0; for (int i = 0; i < length; i++) { dot += x[i] * (double) y[i]; } return dot; } /** * @param x vector for whom norm to be calculated * @return the L2 norm of vector x * @throws IllegalArgumentException if x is of 0 length */ public static double norm(float[] x) { double total = 0.0; for (float f : x) { total += (double) f * (double) f; } return Math.sqrt(total); } /** * @param M tall, skinny matrix * @return MT * M as a dense matrix */ public static RealMatrix transposeTimesSelf(Collection<float[]> M) { if (M == null || M.isEmpty()) { return null; } int features = 0; RealMatrix result = null; for (float[] vector : M) { if (result == null) { features = vector.length; result = new Array2DRowRealMatrix(features, features); } for (int row = 0; row < features; row++) { float rowValue = vector[row]; for (int col = 0; col < features; col++) { result.addToEntry(row, col, rowValue * vector[col]); } } } return result; } /** * @param doubles array of doubles * @return array "cast" to floats */ public static float[] toFloats(double... doubles) { float[] floats = new float[doubles.length]; for (int i = 0; i < floats.length; i++) { floats[i] = (float) doubles[i]; } return floats; } /** * @param floats array of floats * @return array "cast" to doubles */ public static double[] toDoubles(float... floats) { double[] doubles = new double[floats.length]; for (int i = 0; i < doubles.length; i++) { doubles[i] = floats[i]; } return doubles; } }